Skip to main content

Advertisement

Log in

Cognitive Impairment in Idiopathic Normal Pressure Hydrocephalus

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

A Correction to this article was published on 25 July 2022

This article has been updated

Abstract

Idiopathic normal pressure hydrocephalus (iNPH) is a significant cause of the severe cognitive decline in the elderly population. There is no cure for iNPH, but cognitive symptoms can be partially alleviated through cerebrospinal fluid (CSF) diversion. In the early stages of iNPH, cognitive deficits occur primarily in the executive functions and working memory supported by frontostriatal circuits. As the disease progresses, cognition declines continuously and globally, leading to poor quality of life and daily functioning. In this review, we present recent advances in understanding the neurobiological mechanisms of cognitive impairment in iNPH, focusing on (1) abnormal CSF dynamics, (2) dysfunction of frontostriatal and entorhinal-hippocampal circuits and the default mode network, (3) abnormal neuromodulation, and (4) the presence of amyloid-β and tau pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH. Symptomatic occult hydrocephalus with “normal” cerebrospinal-fluid pressure.a treatable syndrome. N Engl J Med 1965, 273: 117–126.

    Article  CAS  PubMed  Google Scholar 

  2. Nakajima M, Yamada S, Miyajima M, Ishii K, Kuriyama N, Kazui H. Guidelines for management of idiopathic normal pressure hydrocephalus (third edition): Endorsed by the Japanese society of normal pressure hydrocephalus. Neurol Med Chir (Tokyo) 2021, 61: 63–97.

    Article  Google Scholar 

  3. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005, 57: S4–S16; discussion ii–v.

  4. Expert consensus on diagnosis and treatment of idiopathic normal pressure hydrocephalus in China (2016). Natl Med J Chin 2016, 96: 1635-1638. DOI: https://doi.org/10.3760/cma.j.issn.0376-2491.2016.21.003. (in Chinese)

  5. Mori E, Ishikawa M, Kato T, Kazui H, Miyake H, Miyajima M, et al. Guidelines for management of idiopathic normal pressure hydrocephalus: Second edition. Neurol Med Chir(Tokyo) 2012, 52: 775–809.

  6. Marmarou A, Bergsneider M, Klinge P, Relkin N, Black PM. The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery 2005, 57: S17–S28;discussionii–v.

  7. Martín-Láez R, Caballero-Arzapalo H, López-Menéndez LÁ, Arango-Lasprilla JC, Vázquez-Barquero A. Epidemiology of idiopathic normal pressure hydrocephalus: A systematic review of the literature. World Neurosurg 2015, 84: 2002–2009.

    Article  PubMed  Google Scholar 

  8. Nakashita S, Wada-Isoe K, Uemura Y, Tanaka K, Yamamoto M, Yamawaki M, et al. Clinical assessment and prevalence of Parkinsonism in Japanese elderly people. Acta Neurol Scand 2016, 133: 373–379.

    Article  CAS  PubMed  Google Scholar 

  9. Hiraoka K, Meguro K, Mori E. Prevalence of idiopathic normal-pressure hydrocephalus in the elderly population of a Japanese rural community. Neurol Med Chir (Tokyo) 2008, 48: 197–199; discussion 199–200.

  10. Tanaka N, Yamaguchi S, Ishikawa H, Ishii H, Meguro K. Prevalence of possible idiopathic normal-pressure hydrocephalus in Japan: The osaki-tajiri project. Neuroepidemiology 2008, 32: 171–175.

    Article  PubMed  Google Scholar 

  11. Brean A, Eide PK. Prevalence of probable idiopathic normal pressure hydrocephalus in a Norwegian population. Acta Neurol Scand 2008, 118: 48–53.

    Article  CAS  PubMed  Google Scholar 

  12. Andersson J, Rosell M, Kockum K, Lilja-Lund O, Söderström L, Laurell K. Prevalence of idiopathic normal pressure hydrocephalus: A prospective, population-based study. PLoS One 2019, 14: e0217705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alvi MA, Brown D, Yolcu Y, Zreik J, Javeed S, Bydon M, et al. Prevalence and trends in management of idiopathic normal pressure hydrocephalus in the United States: Insights from the national inpatient sample. World Neurosurg 2021, 145: e38–e52.

    Article  PubMed  Google Scholar 

  14. Iseki C, Takahashi Y, Wada M, Kawanami T, Adachi M, Kato T. Incidence of idiopathic normal pressure hydrocephalus (iNPH): A 10-year follow-up study of a rural community in Japan. J Neurol Sci 2014, 339: 108–112.

    Article  PubMed  Google Scholar 

  15. Jaraj D, Rabiei K, Marlow T, Jensen C, Skoog I, Wikkelsø C. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology 2014, 82: 1449–1454.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Andersson J, Rosell M, Kockum K, Söderström L, Laurell K. Challenges in diagnosing normal pressure hydrocephalus: Evaluation of the diagnostic guidelines. eNeurologicalSci 2017, 7: 27–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iseki C, Kawanami T, Nagasawa H, Wada M, Koyama S, Kikuchi K, et al. Asymptomatic ventriculomegaly with features of idiopathic normal pressure hydrocephalus on MRI (AVIM) in the elderly: A prospective study in a Japanese population. J Neurol Sci 2009, 277: 54–57.

    Article  PubMed  Google Scholar 

  18. Kuriyama N, Miyajima M, Nakajima M, Kurosawa M, Fukushima W, Watanabe Y, et al. Nationwide hospital-based survey of idiopathic normal pressure hydrocephalus in Japan: Epidemiological and clinical characteristics. Brain Behav 2017, 7: e00635.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Casmiro M, Benassi G, Cacciatore FM, D’Alessandro R. Frequency of idiopathic normal pressure hydrocephalus. Arch Neurol 1989, 46: 608.

    Article  CAS  PubMed  Google Scholar 

  20. Muangpaisan W, Petcharat C, Srinonprasert V. Prevalence of potentially reversible conditions in dementia and mild cognitive impairment in a geriatric clinic. Geriatr Gerontol Int 2012, 12: 59–64.

    Article  PubMed  Google Scholar 

  21. Hashimoto M, Ishikawa M, Mori E, Kuwana N. Study of INPH on neurological improvement (SINPHONI). Diagnosis of idiopathic normal pressure hydrocephalus is supported by MRI-based scheme: A prospective cohort study. Cerebrospinal Fluid Res 2010, 7: 18.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mori K. Management of idiopathic normal-pressure hydrocephalus: A multiinstitutional study conducted in Japan. J Neurosurg 2001, 95: 970–973.

    Article  CAS  PubMed  Google Scholar 

  23. Krauss JK, Regel JP, Vach W, Droste DW, Borremans JJ, Mergner T. Vascular risk factors and arteriosclerotic disease in idiopathic normal-pressure hydrocephalus of the elderly. Stroke 1996, 27: 24–29.

    Article  CAS  PubMed  Google Scholar 

  24. Krauss JK, Droste DW, Vach W, Regel JP, Orszagh M, Borremans JJ, et al. Cerebrospinal fluid shunting in idiopathic normal-pressure hydrocephalus of the elderly: Effect of periventricular and deep white matter lesions. Neurosurgery 1996, 39: 292–299; discussion 299–300.

  25. Picascia M, Minafra B, Zangaglia R, Gracardi L, Pozzi NG, Sinforiani E, et al. Spectrum of cognitive disorders in idiopathic normal pressure hydrocephalus. Funct Neurol 2016, 31: 143–147.

    PubMed  PubMed Central  Google Scholar 

  26. Klinge P, Hellström P, Tans J, Wikkelsø C, Group EIMS. One-year outcome in the European multicentre study on iNPH. Acta Neurol Scand 2012, 126: 145–153.

    Article  Google Scholar 

  27. Poca MA, Solana E, Martínez-Ricarte FR, Romero M, Gándara D, Sahuquillo J. Idiopathic normal pressure hydrocephalus: Results of a prospective cohort of 236 shunted patients. Acta Neurochir Suppl 2012, 114: 247–253.

    Article  PubMed  Google Scholar 

  28. Krauss JK, Halve B. Normal pressure hydrocephalus: Survey on contemporary diagnostic algorithms and therapeutic decision-making in clinical practice. Acta Neurochir (Wien) 2004, 146: 379–388; discussion 388.

  29. Williams MA, Relkin NR. Diagnosis and management of idiopathic normal-pressure hydrocephalus. Neurol Clin Pract 2013, 3: 375–385.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Takeuchi T, Yajima K. Long-term 4 years follow-up study of 482 patients who underwent shunting for idiopathic normal pressure hydrocephalus-course of symptoms and shunt efficacy rates compared by age group. Neurol Med Chir (Tokyo) 2019, 59: 281–286.

    Article  Google Scholar 

  31. Brean A, Fredø HL, Sollid S, Müller T, Sundstrøm T, Eide PK. Five-year incidence of surgery for idiopathic normal pressure hydrocephalus in Norway. Acta Neurol Scand 2009, 120: 314–316.

    Article  CAS  PubMed  Google Scholar 

  32. Kambara A, Kajimoto Y, Yagi R, Ikeda N, Furuse M, Nonoguchi N, et al. Long-term prognosis of cognitive function in patients with idiopathic normal pressure hydrocephalus after shunt surgery. Front Aging Neurosci 2021, 12: 617150.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kahlon B, Sjunnesson J, Rehncrona S. Long-term outcome in patients with suspected normal pressure hydrocephalus. Neurosurgery 2007, 60: 327–332; discussion 332.

  34. Toma AK, Papadopoulos MC, Stapleton S, Kitchen ND, Watkins LD. Systematic review of the outcome of shunt surgery in idiopathic normal-pressure hydrocephalus. Acta Neurochir (Wien) 2013, 155: 1977–1980.

    Article  Google Scholar 

  35. McGirt MJ, Woodworth G, Coon AL, Thomas G, Williams MA, Rigamonti D. Diagnosis, treatment, and analysis of long-term outcomes in idiopathic normal-pressure hydrocephalus. Neurosurgery 2005, 57: 699–705; discussion 699–705.

  36. Solana E, Sahuquillo J, Junqué C, Quintana M, Poca MA. Cognitive disturbances and neuropsychological changes after surgical treatment in a cohort of 185 patients with idiopathic normal pressure hydrocephalus. Arch Clin Neuropsychol 2012, 27: 304–317.

    Article  PubMed  Google Scholar 

  37. Saito M, Nishio Y, Kanno S, Uchiyama M, Hayashi A, Takagi M, et al. Cognitive profile of idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra 2011, 1: 202–211.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Katzen H, Ravdin LD, Assuras S, Heros R, Kaplitt M, Schwartz TH, et al. Postshunt cognitive and functional improvement in idiopathic normal pressure hydrocephalus. Neurosurgery 2011, 68: 416–419.

    Article  PubMed  Google Scholar 

  39. Bugalho P, Alves L, Miguel R, Ribeiro O. Profile of cognitive dysfunction and relation with gait disturbance in Normal Pressure Hydrocephalus. Clin Neurol Neurosurg 2014, 118: 83–88.

    Article  PubMed  Google Scholar 

  40. Lenfeldt N, Larsson A, Nyberg L, Andersson M, Birgander R, Eklund A, et al. Idiopathic normal pressure hydrocephalus: Increased supplementary motor activity accounts for improvement after CSF drainage. Brain 2008, 131: 2904–2912.

    Article  PubMed  Google Scholar 

  41. Lim TS, Choi JY, Park SA, Youn YC, Lee HY, Kim BG, et al. Evaluation of coexistence of Alzheimer’s disease in idiopathic normal pressure hydrocephalus using ELISA analyses for CSF biomarkers. BMC Neurol 2014, 14: 66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Iddon JL, Pickard JD, Cross JJ, Griffiths PD, Czosnyka M, Sahakian BJ. Specific patterns of cognitive impairment in patients with idiopathic normal pressure hydrocephalus and Alzheimer’s disease: A pilot study. J Neurol Neurosurg Psychiatry 1999, 67: 723–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mataró M, Matarín M, Poca MA, Pueyo R, Sahuquillo J, Barrios M, et al. Functional and magnetic resonance imaging correlates of corpus callosum in normal pressure hydrocephalus before and after shunting. J Neurol Neurosurg Psychiatry 2007, 78: 395–398.

    Article  PubMed  Google Scholar 

  44. da Rocha SFB, Kowacs PA, de Souza RKM, Pedro MKF, Ramina R, Teive H. Serial Tap Test of patients with idiopathic normal pressure hydrocephalus: Impact on cognitive function and its meaning. Fluids Barriers CNS 2021, 18: 22.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kanno S, Saito M, Hayashi A, Uchiyama M, Hiraoka K, Nishio Y, et al. Counting-backward test for executive function in idiopathic normal pressure hydrocephalus. Acta Neurol Scand 2012, 126: 279–286.

    Article  CAS  PubMed  Google Scholar 

  46. Hellström P, Edsbagge M, Blomsterwall E, Archer T, Tisell M, Tullberg M, et al. Neuropsychological effects of shunt treatment in idiopathic normal pressure hydrocephalus. Neurosurgery 2008, 63: 527–535; discussion 535–536.

  47. Duinkerke A, Williams MA, Rigamonti D, Hillis AE. Cognitive recovery in idiopathic normal pressure hydrocephalus after shunt. Cogn Behav Neurol 2004, 17: 179–184.

    Article  PubMed  Google Scholar 

  48. Thomas G, McGirt MJ, Woodworth G, Heidler J, Rigamonti D, Hillis AE, et al. Baseline neuropsychological profile and cognitive response to cerebrospinal fluid shunting for idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord 2005, 20: 163–168.

    Article  PubMed  Google Scholar 

  49. Mataró M, Poca MA, del Mar Matarín M, Catalan R, Sahuquillo J, Galard R. CSF galanin and cognition after shunt surgery in normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 2003, 74: 1272–1277.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Griffa A, Bommarito G, Assal F, Herrmann FR, van de Ville D, Allali G. Dynamic functional networks in idiopathic normal pressure hydrocephalus: Alterations and reversibility by CSF tap test. Hum Brain Mapp 2021, 42: 1485–1502.

    Article  PubMed  Google Scholar 

  51. Gleichgerrcht E, Cervio A, Salvat J, Loffredo AR, Vita L, Roca M, et al. Executive function improvement in normal pressure hydrocephalus following shunt surgery. Behav Neurol 2009, 21: 516796.

    Article  Google Scholar 

  52. Picascia M, Pozzi NG, Todisco M, Minafra B, Sinforiani E, Zangaglia R, et al. Cognitive disorders in normal pressure hydrocephalus with initial Parkinsonism in comparison with de novo Parkinson’s disease. Eur J Neurol 2019, 26: 74–79.

    Article  CAS  PubMed  Google Scholar 

  53. Ogino A, Kazui H, Miyoshi N, Hashimoto M, Ohkawa S, Tokunaga H, et al. Cognitive impairment in patients with idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord 2006, 21: 113–119.

    Article  PubMed  Google Scholar 

  54. Chaudhry P, Kharkar S, Heidler-Gary J, Hillis AE, Newhart M, Kleinman JT, et al. Characteristics and reversibility of dementia in normal pressure hydrocephalus. Behav Neurol 2007, 18: 149–158.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen YC, Chiang SW, Chi CH, Liou M, Kuo DP, Kao HW, et al. Early idiopathic normal pressure hydrocephalus patients with neuropsychological impairment are associated with increased fractional anisotropy in the anterior thalamic nucleus. Medicine 2016, 95: e3636.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Skalický P, Mládek A, Vlasák A, Whitley H, Bradáč O. First experiences with Miethke M.blue® valve in iNPH patients. J Clin Neurosci 2022, 98: 127–132.

    Article  PubMed  CAS  Google Scholar 

  57. Malm J, Kristensen B, Karlsson T, Fagerlund M, Elfverson J, Ekstedt J. The predictive value of cerebrospinal fluid dynamic tests in patients with th idiopathic adult hydrocephalus syndrome. Arch Neurol 1995, 52: 783–789.

    Article  CAS  PubMed  Google Scholar 

  58. Peterson KA, Savulich G, Jackson D, Killikelly C, Pickard JD, Sahakian BJ. The effect of shunt surgery on neuropsychological performance in normal pressure hydrocephalus: A systematic review and meta-analysis. J Neurol 2016, 263: 1669–1677.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Peterson KA, Mole TB, Keong NCH, DeVito EE, Savulich G, Pickard JD, et al. Structural correlates of cognitive impairment in normal pressure hydrocephalus. Acta Neurol Scand 2019, 139: 305–312.

    Article  PubMed  Google Scholar 

  60. Chrysikopoulos H. Idiopathic normal pressure hydrocephalus: Thoughts on etiology and pathophysiology. Med Hypotheses 2009, 73: 718–724.

    Article  PubMed  Google Scholar 

  61. Shinoda N, Hirai O, Hori S, Mikami K, Bando T, Shimo D, et al. Utility of MRI-based disproportionately enlarged subarachnoid space hydrocephalus scoring for predicting prognosis after surgery for idiopathic normal pressure hydrocephalus: Clinical research. J Neurosurg 2017, 127: 1436–1442.

    Article  PubMed  Google Scholar 

  62. Yamamoto D, Kazui H, Wada T, Nomura K, Sugiyama H, Shimizu Y, et al. Association between milder brain deformation before a shunt operation and improvement in cognition and gait in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord 2013, 35: 197–207.

    Article  PubMed  Google Scholar 

  63. Savolainen S, Hurskainen H, Paljärvi L, Alafuzoff I, Vapalahti M. Five-year outcome of normal pressure hydrocephalus with or without a shunt: Predictive value of the clinical signs, neuropsychological evaluation and infusion test. Acta Neurochir 2002, 144: 515–523.

    Article  CAS  PubMed  Google Scholar 

  64. Engel DC, Pirpamer L, Hofer E, Schmidt R, Brendle C. Incidental findings of typical iNPH imaging signs in asymptomatic subjects with subclinical cognitive decline. Fluids Barriers CNS 2021, 18: 37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Miyoshi N, Kazui H, Ogino A, Ishikawa M, Miyake H, Tokunaga H, et al. Association between cognitive impairment and gait disturbance in patients with idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord 2005, 20: 71–76.

    Article  PubMed  Google Scholar 

  66. Johanson CE, Duncan JA 3rd, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res 2008, 5: 10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Iliff JJ, Wang MH, Liao YH, Plogg BA, Peng WG, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid Β. Sci Transl Med 2012, 4: 147ra111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Kress BT, Iliff JJ, Xia MS, Wang MH, Wei HS, Zeppenfeld D, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 2014, 76: 845–861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Eide PK. Intracranial pressure parameters in idiopathic normal pressure hydrocephalus patients treated with ventriculo-peritoneal shunts. Acta Neurochir (Wien) 2006, 148: 21–29; discussion 29.

  70. Eide PK, Brean A. Intracranial pulse pressure amplitude levels determined during preoperative assessment of subjects with possible idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2006, 148: 1151–1156; discussion 1156.

  71. Foss T, Eide PK, Finset A. Intracranial pressure parameters in idiopathic normal pressure hydrocephalus patients with or without improvement of cognitive function after shunt treatment. Dement Geriatr Cogn Disord 2006, 23: 47–54.

    Article  PubMed  Google Scholar 

  72. Kojoukhova M, Vanha KI, Timonen M, Koivisto AM, Nerg O, Rummukainen J, et al. Associations of intracranial pressure with brain biopsy, radiological findings, and shunt surgery outcome in patients with suspected idiopathic normal pressure hydrocephalus. Acta Neurochir (Wien) 2017, 159: 51–61.

    Article  Google Scholar 

  73. Ringstad G, Valnes LM, Dale AM, Pripp AH, Vatnehol SAS, Emblem KE, et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight 2018, 3: e121537.

    Article  PubMed Central  Google Scholar 

  74. Eide PK, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: A glymphatic magnetic resonance imaging study. J Cereb Blood Flow Metab 2019, 39: 1355–1368.

    Article  PubMed  Google Scholar 

  75. Eide PK, Valnes LM, Pripp AH, Mardal KA, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus. J Cereb Blood Flow Metab 2020, 40: 1849–1858.

    Article  CAS  PubMed  Google Scholar 

  76. Yokota H, Vijayasarathi A, Cekic M, Hirata Y, Linetsky M, Ho M, et al. Diagnostic performance of glymphatic system evaluation using diffusion tensor imaging in idiopathic normal pressure hydrocephalus and mimickers. Curr Gerontol Geriatr Res 2019, 2019: 5675014.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chudasama Y, Robbins TW. Functions of frontostriatal systems in cognition: Comparative neuropsychopharmacological studies in rats, monkeys and humans. Biol Psychol 2006, 73: 19–38.

    Article  CAS  PubMed  Google Scholar 

  78. Liu WY, Wang CP, He TT, Su MH, Lu Y, Zhang GY, et al. Substantia nigra integrity correlates with sequential working memory in Parkinson’s disease. J Neurosci 2021, 41: 6304–6313.

    Article  CAS  PubMed Central  Google Scholar 

  79. Manza P, Schwartz G, Masson M, Kann S, Volkow ND, Li CSR, et al. Levodopa improves response inhibition and enhances striatal activation in early-stage Parkinson’s disease. Neurobiol Aging 2018, 66: 12–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aoki Y, Kazui H, Tanaka T, Ishii R, Wada T, Ikeda S, et al. EEG and Neuronal Activity Topography analysis can predict effectiveness of shunt operation in idiopathic normal pressure hydrocephalus patients. Neuroimage Clin 2013, 3: 522–530.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kitamura T, MacDonald CJ, Tonegawa S. Entorhinal-hippocampal neuronal circuits bridge temporally discontiguous events. Learn Mem 2015, 22: 438–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Suh J, Rivest AJ, Nakashiba T, Tominaga T, Tonegawa S. Entorhinal cortex layer III input to the Hippocampus is crucial for temporal association memory. Science 2011, 334: 1415–1420.

    Article  CAS  PubMed  Google Scholar 

  83. Nakashiba T, Young JZ, McHugh TJ, Buhl DL, Tonegawa S. Transgenic inhibition of synaptic transmission reveals role of CA3 output in hippocampal learning. Science 2008, 319: 1260–1264.

    Article  CAS  PubMed  Google Scholar 

  84. Golomb J, de Leon MJ, George AE, Kluger A, Convit A, Rusinek H, et al. Hippocampal atrophy correlates with severe cognitive impairment in elderly patients with suspected normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 1994, 57: 590–593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Khoo HM, Kishima H, Tani N, Oshino S, Maruo T, Hosomi K, et al. Default mode network connectivity in patients with idiopathic normal pressure hydrocephalus. J Neurosurg 2016, 124: 350–358.

    Article  PubMed  Google Scholar 

  86. Kanno S, Ogawa KI, Kikuchi H, Toyoshima M, Abe N, Sato K, et al. Reduced default mode network connectivity relative to white matter integrity is associated with poor cognitive outcomes in patients with idiopathic normal pressure hydrocephalus. BMC Neurol 2021, 21: 353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chiaravalloti A, Filippi L, Bagni O, Schillaci O, Czosnyka Z, Czosnyka M, et al. Cortical metabolic changes and clinical outcome in normal pressure hydrocephalus after ventriculoperitoneal shunt: Our preliminary results. Rev Esp Med Nucl Imagen Mol (Engl Ed) 2020, 39: 367–374.

    CAS  Google Scholar 

  88. Kamiya K, Kamagata K, Miyajima M, Nakajima M, Hori M, Tsuruta K, et al. Diffusional kurtosis imaging in idiopathic normal pressure hydrocephalus: Correlation with severity of cognitive impairment. Magn Reson Med Sci 2016, 15: 316–323.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ouchi Y, Nakayama T, Kanno T, Yoshikawa E, Shinke T, Torizuka T. In vivo presynaptic and postsynaptic striatal dopamine functions in idiopathic normal pressure hydrocephalus. J Cereb Blood Flow Metab 2007, 27: 803–810.

    Article  CAS  PubMed  Google Scholar 

  90. Nakayama T, Ouchi Y, Yoshikawa E, Sugihara G, Torizuka T, Tanaka K. Striatal D2 receptor availability after shunting in idiopathic normal pressure hydrocephalus. J Nucl Med 2007, 48: 1981–1986.

    Article  CAS  PubMed  Google Scholar 

  91. Egawa T, Mishima K, Egashira N, Fukuzawa M, Abe K, Yae T, et al. Impairment of spatial memory in Kaolin-induced hydrocephalic rats is associated with changes in the hippocampal cholinergic and noradrenergic contents. Behav Brain Res 2002, 129: 31–39.

    Article  CAS  PubMed  Google Scholar 

  92. Nardone R, Golaszewski S, Schwenker K, Brigo F, Maccarrone M, Versace V, et al. Cholinergic transmission is impaired in patients with idiopathic normal-pressure hydrocephalus: A TMS study. J Neural Transm (Vienna) 2019, 126: 1073–1080.

    Article  Google Scholar 

  93. Leinonen V, Koivisto AM, Savolainen S, Rummukainen J, Sutela A, Vanninen R, et al. Post-mortem findings in 10 patients with presumed normal-pressure hydrocephalus and review of the literature. Neuropathol Appl Neurobiol 2012, 38: 72–86.

    Article  CAS  PubMed  Google Scholar 

  94. Hamilton R, Patel S, Lee EB, Jackson EM, Lopinto J, Arnold SE, et al. Lack of shunt response in suspected idiopathic normal pressure hydrocephalus with Alzheimer disease pathology. Ann Neurol 2010, 68: 535–540.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Golomb J, Wisoff J, Miller DC, Boksay I, Kluger A, Weiner H, et al. Alzheimer’s disease comorbidity in normal pressure hydrocephalus: Prevalence and shunt response. J Neurol Neurosurg Psychiatry 2000, 68: 778–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pomeraniec IJ, Bond AE, Lopes MB, Jane JA Sr. Concurrent Alzheimer’s pathology in patients with clinical normal pressure hydrocephalus: Correlation of high-volume lumbar puncture results, cortical brain biopsies, and outcomes. J Neurosurg 2016, 124: 382–388.

    Article  CAS  PubMed  Google Scholar 

  97. Hiraoka K, Narita W, Kikuchi H, Baba T, Kanno S, Iizuka O, et al. Amyloid deposits and response to shunt surgery in idiopathic normal-pressure hydrocephalus. J Neurol Sci 2015, 356: 124–128.

    Article  CAS  PubMed  Google Scholar 

  98. Nakajima M, Miyajima M, Ogino I, Akiba C, Kawamura K, Kamohara C, et al. Preoperative phosphorylated tau concentration in the cerebrospinal fluid can predict cognitive function three years after shunt surgery in patients with idiopathic normal pressure hydrocephalus. J Alzheimers Dis 2018, 66: 319–331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kawamura K, Miyajima M, Nakajima M, Kanai M, Motoi Y, Nojiri S, et al. Cerebrospinal fluid amyloid-β oligomer levels in patients with idiopathic normal pressure hydrocephalus. J Alzheimers Dis 2021, 83: 179–190.

    Article  CAS  Google Scholar 

  100. Nakajima M, Miyajima M, Ogino I, Akiba C, Sugano H, Hara T, et al. Cerebrospinal fluid biomarkers for prognosis of long-term cognitive treatment outcomes in patients with idiopathic normal pressure hydrocephalus. J Neurol Sci 2015, 357: 88–95.

    Article  PubMed  Google Scholar 

  101. Quartey MO, Nyarko JNK, Maley JM, Barnes JR, Bolanos MAC, Heistad RM, et al. The Aβ(1–38) peptide is a negative regulator of the Aβ(1–42) peptide implicated in Alzheimer disease progression. Sci Rep 2021, 11: 431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Moore BD, Martin J, de Mena L, Sanchez J, Cruz PE, Ceballos-Diaz C, et al. Short aβ peptides attenuate Aβ42 toxicity in vivo. J Exp Med 2018, 215: 283–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Akiba C, Nakajima M, Miyajima M, Ogino I, Motoi Y, Kawamura K, et al. Change of amyloid-β 1–42 toxic conformer ratio after cerebrospinal fluid diversion predicts long-term cognitive outcome in patients with idiopathic normal pressure hydrocephalus. J Alzheimers Dis 2018, 63: 989–1002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This review was supported by the National Natural Science Foundation of China (31961133025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Ye.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, H., Hu, F., Ding, J. et al. Cognitive Impairment in Idiopathic Normal Pressure Hydrocephalus. Neurosci. Bull. 38, 1085–1096 (2022). https://doi.org/10.1007/s12264-022-00873-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00873-2

Keywords

Navigation