Skip to main content

Advertisement

Log in

Evolving Models and Tools for Microglial Studies in the Central Nervous System

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Microglia play multiple roles in such processes as brain development, homeostasis, and pathology. Due to their diverse mechanisms of functions, the complex sub-classifications, and the large differences between different species, especially compared with humans, very different or even opposite conclusions can be drawn from studies with different research models. The choice of appropriate research models and the associated tools are thus key ingredients of studies on microglia. Mice are the most commonly used animal models. In this review, we summarize in vitro and in vivo models of mouse and human-derived microglial research models, including microglial cell lines, primary microglia, induced microglia-like cells, transgenic mice, human-mouse chimeric models, and microglial replacement models. We also summarize recent developments in novel single-cell and in vivo imaging technologies. We hope our review can serve as an efficient reference for the future study of microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B. Neocortical glial cell numbers in human brains. Neurobiol Aging 2008, 29: 1754–1762.

    Article  CAS  PubMed  Google Scholar 

  2. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990, 39: 151–170.

    Article  CAS  PubMed  Google Scholar 

  3. Tay TL, Savage JC, Hui CW, Bisht K, Tremblay MÈ. Microglia across the lifespan: From origin to function in brain development, plasticity and cognition. J Physiol 2017, 595: 1929–1945.

    Article  CAS  PubMed  Google Scholar 

  4. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 2010, 330: 841–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hirbec H, Déglon N, Foo LC, Goshen I, Grutzendler J, Hangen E, et al. Emerging technologies to study glial cells. Glia 2020, 68: 1692–1728.

    Article  PubMed  Google Scholar 

  6. Prinz M, Jung S, Priller J. Microglia biology: One century of evolving concepts. Cell 2019, 179: 292–311.

    Article  CAS  PubMed  Google Scholar 

  7. Cronk JC, Filiano AJ, Louveau A, Marin I, Marsh R, Ji E, et al. Peripherally derived macrophages can engraft the brain independent of irradiation and maintain an identity distinct from microglia. J Exp Med 2018, 215: 1627–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol 2014, 32: 367–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Squarzoni P, Oller G, Hoeffel G, Pont-Lezica L, Rostaing P, Low D, et al. Microglia modulate wiring of the embryonic forebrain. Cell Rep 2014, 8: 1271–1279.

    Article  CAS  PubMed  Google Scholar 

  10. Cunningham CL, Martínez-Cerdeño V, Noctor SC. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J Neurosci 2013, 33: 4216–4233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mallat M, Marín-Teva JL, Chéret C. Phagocytosis in the developing CNS: More than clearing the corpses. Curr Opin Neurobiol 2005, 15: 101–107.

    Article  CAS  PubMed  Google Scholar 

  12. Marín-Teva JL, Cuadros MA, Martín-Oliva D, Navascués J. Microglia and neuronal cell death. Neuron Glia Biol 2011, 7: 25–40.

    Article  PubMed  Google Scholar 

  13. Chounchay S, Noctor SC, Chutabhakdikul N. Microglia enhances proliferation of neural progenitor cells in an in vitro model of hypoxic-ischemic injury. EXCLI J 2020, 19: 950–961.

    PubMed  PubMed Central  Google Scholar 

  14. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012, 74: 691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hong S, Beja-Glasser VF, Nfonoyim BM, Frouin A, Li S, Ramakrishnan S, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016, 352: 712–716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim HJ, Cho MH, Shim WH, Kim JK, Jeon EY, Kim DH, et al. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol Psychiatry 2017, 22: 1576–1584.

    Article  CAS  PubMed  Google Scholar 

  17. Brites D, Fernandes A. Neuroinflammation and depression: Microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci 2015, 9: 476.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci 2019, 22: 374–385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Qin C, Zhou LQ, Ma XT, Hu ZW, Yang S, Chen M, et al. Dual functions of microglia in ischemic stroke. Neurosci Bull 2019, 35: 921–933.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Smith AM, Dragunow M. The human side of microglia. Trends Neurosci 2014, 37: 125–135.

    Article  CAS  PubMed  Google Scholar 

  21. Dello Russo C, Cappoli N, Coletta I, Mezzogori D, Paciello F, Pozzoli G, et al. The human microglial HMC3 cell line: Where do we stand? A systematic literature review. J Neuroinflammation 2018, 15: 259.

    Article  CAS  Google Scholar 

  22. Nagamoto-Combs K, Kulas J, Combs CK. A novel cell line from spontaneously immortalized murine microglia. J Neurosci Methods 2014, 233: 187–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Floden AM, Combs CK. Microglia repetitively isolated from in vitro mixed glial cultures retain their initial phenotype. J Neurosci Methods 2007, 164: 218–224.

    Article  CAS  PubMed  Google Scholar 

  24. Gordon R, Hogan CE, Neal ML, Anantharam V, Kanthasamy AG, Kanthasamy A. A simple magnetic separation method for high-yield isolation of pure primary microglia. J Neurosci Methods 2011, 194: 287–296.

    Article  PubMed  Google Scholar 

  25. Moussaud S, Draheim HJ. A new method to isolate microglia from adult mice and culture them for an extended period of time. J Neurosci Methods 2010, 187: 243–253.

    Article  PubMed  Google Scholar 

  26. Utz SG, See P, Mildenberger W, Thion MS, Silvin A, Lutz M, et al. Early fate defines microglia and non-parenchymal brain macrophage development. Cell 2020, 181: 557–573.e18.

  27. Biber K, Owens T, Boddeke E. What is microglia neurotoxicity (Not)? Glia 2014, 62: 841–854.

    Article  PubMed  Google Scholar 

  28. Bergner CG, van der Meer F, Winkler A, Wrzos C, Türkmen M, Valizada E, et al. Microglia damage precedes major myelin breakdown in X-linked adrenoleukodystrophy and metachromatic leukodystrophy. Glia 2019, 67: 1196–1209.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Nagai A, Mishima S, Ishida Y, Ishikura H, Harada T, Kobayashi S, et al. Immortalized human microglial cell line: Phenotypic expression. J Neurosci Res 2005, 81: 342–348.

    Article  CAS  PubMed  Google Scholar 

  30. Williams K, Bar-Or A, Ulvestad E, Olivier A, Antel JP, Yong VW. Biology of adult human microglia in culture: Comparisons with peripheral blood monocytes and astrocytes. J Neuropathol Exp Neurol 1992, 51: 538–549.

    Article  CAS  PubMed  Google Scholar 

  31. McLarnon JG, Helm J, Goghari V, Franciosi S, Choi HB, Nagai A, et al. Anion channels modulate store-operated calcium influx in human microglia. Cell Calcium 2000, 28: 261–268.

    Article  CAS  PubMed  Google Scholar 

  32. Lue LF, Beach TG, Walker DG. Alzheimer’s disease research using human microglia. Cells 2019, 8: 838.

    Article  CAS  PubMed Central  Google Scholar 

  33. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131: 861–872.

    Article  CAS  PubMed  Google Scholar 

  34. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007, 318: 1917–1920.

    Article  CAS  PubMed  Google Scholar 

  35. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron 2017, 94: 278–293.e9.

  36. Pandya H, Shen MJ, Ichikawa DM, Sedlock AB, Choi Y, Johnson KR, et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci 2017, 20: 753–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muffat J, Li Y, Yuan B, Mitalipova M, Omer A, Corcoran S, et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med 2016, 22: 1358–1367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sellgren CM, Sheridan SD, Gracias J, Xuan D, Fu T, Perlis RH. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry 2017, 22: 170–177.

    Article  CAS  PubMed  Google Scholar 

  39. Douvaras P, Sun B, Wang M, Kruglikov I, Lallos G, Zimmer M, et al. Directed differentiation of human pluripotent stem cells to microglia. Stem Cell Reports 2017, 8: 1516–1524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haenseler W, Sansom SN, Buchrieser J, Newey SE, Moore CS, Nicholls FJ, et al. A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Reports 2017, 8: 1727–1742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Beutner C, Roy K, Linnartz B, Napoli I, Neumann H. Generation of microglial cells from mouse embryonic stem cells. Nat Protoc 2010, 5: 1481–1494.

    Article  CAS  PubMed  Google Scholar 

  42. McQuade A, Coburn M, Tu CH, Hasselmann J, Davtyan H, Blurton-Jones M. Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Mol Neurodegener 2018, 13: 67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Claes C, Van Den Daele J, Boon R, Schouteden S, Colombo A, Monasor LS, et al. Human stem cell-derived monocytes and microglia-like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2. Alzheimers Dement 2019, 15: 453–464.

    Article  PubMed  Google Scholar 

  44. Zujovic V, Taupin V. Use of cocultured cell systems to elucidate chemokine-dependent neuronal/microglial interactions: Control of microglial activation. Methods 2003, 29: 345–350.

    Article  CAS  PubMed  Google Scholar 

  45. Roqué PJ, Costa LG. Co-culture of neurons and microglia. Curr Protoc Toxicol 2017, 74: 11.24.1–11.24.17.

  46. Petersen MA, Dailey ME. Diverse microglial motility behaviors during clearance of dead cells in hippocampal slices. Glia 2004, 46: 195–206.

    Article  PubMed  Google Scholar 

  47. Masuch A, van der Pijl R, Füner L, Wolf Y, Eggen B, Boddeke E, et al. Microglia replenished OHSC: A culture system to study in vivo like adult microglia. Glia 2016, 64: 1285–1297.

    Article  PubMed  Google Scholar 

  48. Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 2014, 9: 2329–2340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ormel PR, Vieira de Sá R, van Bodegraven EJ, Karst H, Harschnitz O, Sneeboer MAM, et al. Microglia innately develop within cerebral organoids. Nat Commun 2018, 9: 4167.

  50. Xu R, Boreland AJ, Li X, Erickson C, Jin M, Atkins C, et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. bioRxiv 2020. https://doi.org/10.1101/2020.10.09.331710.

  51. Hirasawa T, Ohsawa K, Imai Y, Ondo Y, Akazawa C, Uchino S, et al. Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 2005, 81: 357–362.

    Article  CAS  PubMed  Google Scholar 

  52. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, et al. Analysis of fractalkine receptor CX3CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 2000, 20: 4106–4114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 2003, 101: 1155–1163.

    Article  CAS  PubMed  Google Scholar 

  54. Ovchinnikov DA, van Zuylen WJ, DeBats CE, Alexander KA, Kellie S, Hume DA. Expression of Gal4-dependent transgenes in cells of the mononuclear phagocyte system labeled with enhanced cyan fluorescent protein using Csf1r-Gal4VP16/UAS-ECFP double-transgenic mice. J Leukoc Biol 2008, 83: 430–433.

    Article  CAS  PubMed  Google Scholar 

  55. Wieghofer P, Prinz M. Genetic manipulation of microglia during brain development and disease. Biochim Biophys Acta 2016, 1862: 299–309.

    Article  CAS  PubMed  Google Scholar 

  56. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci U S A 2016, 113: E1738–E1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kaiser T, Feng G. Tmem119-EGFP and Tmem119-CreERT2 transgenic mice for labeling and manipulating microglia. eNeuro 2019, 6. https://doi.org/10.1523/eneuro.0448-18.2019.

  58. Erblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 2011, 6: e26317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Luo J, Elwood F, Britschgi M, Villeda S, Zhang H, Ding Z, et al. Colony-stimulating factor 1 receptor (CSF1R) signaling in injured neurons facilitates protection and survival. J Exp Med 2013, 210: 157–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hövelmeyer N, et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 2005, 11: 146–152.

    Article  CAS  PubMed  Google Scholar 

  61. Mildner A, Schmidt H, Nitsche M, Merkler D, Hanisch UK, Mack M, et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 2007, 10: 1544–1553.

    Article  CAS  PubMed  Google Scholar 

  62. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron 2006, 49: 489–502.

    Article  CAS  PubMed  Google Scholar 

  63. Ding Z, Mathur V, Ho PP, James ML, Lucin KM, Hoehne A, et al. Antiviral drug ganciclovir is a potent inhibitor of microglial proliferation and neuroinflammation. J Exp Med 2014, 211: 189–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 2013, 16: 543–551.

    Article  CAS  PubMed  Google Scholar 

  65. Goldmann T, Wieghofer P, Müller PF, Wolf Y, Varol D, Yona S, et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci 2013, 16: 1618–1626.

    Article  CAS  PubMed  Google Scholar 

  66. McKercher SR, Torbett BE, Anderson KL, Henkel GW, Vestal DJ, Baribault H, et al. Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. EMBO J 1996, 15: 5647–5658.

  67. van Rooijen N, van Nieuwmegen R. Elimination of phagocytic cells in the spleen after intravenous injection of liposome-encapsulated dichloromethylene diphosphonate. An enzyme-histochemical study. Cell Tissue Res 1984, 238: 355–358.

    PubMed  Google Scholar 

  68. Faustino JV, Wang X, Johnson CE, Klibanov A, Derugin N, Wendland MF, et al. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci 2011, 31: 12992–13001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li MS, Li ZG, Ren HL, Jin WN, Wood K, Liu Q, et al. Colony stimulating factor 1 receptor inhibition eliminates microglia and attenuates brain injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 2017, 37: 2383–2395.

    Article  CAS  PubMed  Google Scholar 

  70. Acharya MM, Green KN, Allen BD, Najafi AR, Syage A, Minasyan H, et al. Elimination of microglia improves cognitive function following cranial irradiation. Sci Rep 2016, 6: 31545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ferron M, Vacher J. Targeted expression of Cre recombinase in macrophages and osteoclasts in transgenic mice. Genesis 2005, 41: 138–145.

    Article  CAS  PubMed  Google Scholar 

  72. Boillée S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, Kassiotis G, et al. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 2006, 312: 1389–1392.

    Article  PubMed  CAS  Google Scholar 

  73. Caton ML, Smith-Raska MR, Reizis B. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J Exp Med 2007, 204: 1653–1664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Deng L, Zhou JF, Sellers RS, Li JF, Nguyen AV, Wang Y, et al. A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am J Pathol 2010, 176: 952–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Qian BZ, Li JF, Zhang H, Kitamura T, Zhang JH, Campion LR, et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475: 222–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wieghofer P, Knobeloch KP, Prinz M. Genetic targeting of microglia. Glia 2015, 63: 1–22.

    Article  PubMed  Google Scholar 

  77. Buttgereit A, Lelios I, Yu X, Vrohlings M, Krakoski NR, Gautier EL, et al. Sall1 is a transcriptional regulator defining microglia identity and function. Nat Immunol 2016, 17: 1397–1406.

    Article  CAS  PubMed  Google Scholar 

  78. Masuda T, Amann L, Sankowski R, Staszewski O, Lenz M, D Errico P, et al. Novel Hexb-based tools for studying microglia in the CNS. Nat Immunol 2020, 21: 802–815.

  79. Rosario AM, Cruz PE, Ceballos-Diaz C, Strickland MR, Siemienski Z, Pardo M, et al. Microglia-specific targeting by novel capsid-modified AAV6 vectors. Mol Ther Methods Clin Dev 2016, 3: 16026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Åkerblom M, Sachdeva R, Quintino L, Wettergren EE, Chapman KZ, Manfre G, et al. Visualization and genetic modification of resident brain microglia using lentiviral vectors regulated by microRNA-9. Nat Commun 2013, 4: 1770.

    Article  PubMed  CAS  Google Scholar 

  81. Maes ME, Colombo G, Schulz R, Siegert S. Targeting microglia with lentivirus and AAV: Recent advances and remaining challenges. Neurosci Lett 2019, 707: 134310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hasselmann J, Coburn MA, England W, Figueroa Velez DX, Kiani Shabestari S, Tu CH, et al. Development of a chimeric model to study and manipulate human microglia in vivo. Neuron 2019, 103: 1016–1033.e10.

  83. Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL, et al. Development and function of human innate immune cells in a humanized mouse model. Nat Biotechnol 2014, 32: 364–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mancuso R, Van Den Daele J, Fattorelli N, Wolfs L, Balusu S, Burton O, et al. Stem-cell-derived human microglia transplanted in mouse brain to study human disease. Nat Neurosci 2019, 22: 2111–2116.

    Article  CAS  PubMed  Google Scholar 

  85. Xu RJ, Li XX, Boreland AJ, Posyton A, Kwan K, Hart RP, et al. Human iPSC-derived mature microglia retain their identity and functionally integrate in the chimeric mouse brain. Nat Commun 2020, 11: 1577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Svoboda DS, Barrasa MI, Shu J, Rietjens R, Zhang S, Mitalipova M, et al. Human iPSC-derived microglia assume a primary microglia-like state after transplantation into the neonatal mouse brain. Proc Natl Acad Sci U S A 2019, 116: 25293–25303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Varvel NH, Grathwohl SA, Baumann F, Liebig C, Bosch A, Brawek B, et al. Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proc Natl Acad Sci U S A 2012, 109: 18150–18155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Varvel NH, Grathwohl SA, Degenhardt K, Resch C, Bosch A, Jucker M, et al. Replacement of brain-resident myeloid cells does not alter cerebral amyloid-β deposition in mouse models of Alzheimer’s disease. J Exp Med 2015, 212: 1803–1809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kamran P, Sereti KI, Zhao P, Ali SR, Weissman IL, Ardehali R. Parabiosis in mice: A detailed protocol. J Vis Exp 2013, https://doi.org/10.3791/50556

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007, 10: 1538–1543.

    Article  CAS  PubMed  Google Scholar 

  91. Huang Y, Xu Z, Xiong S, Sun F, Qin G, Hu G, et al. Repopulated microglia are solely derived from the proliferation of residual microglia after acute depletion. Nat Neurosci 2018, 21: 530–540.

    Article  CAS  PubMed  Google Scholar 

  92. Derecki NC, Cronk JC, Lu Z, Xu E, Abbott SB, Guyenet PG, et al. Wild-type microglia arrest pathology in a mouse model of Rett syndrome. Nature 2012, 484: 105–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang J, Wegener JE, Huang TW, Sripathy S, De Jesus-Cortes H, Xu P, et al. Wild-type microglia do not reverse pathology in mouse models of Rett syndrome. Nature 2015, 521: E1–E4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Xu Z, Rao Y, Huang Y, Zhou T, Feng R, Xiong S, et al. Efficient strategies for microglia replacement in the central nervous system. Cell Rep 2020, 32: 108041.

    Article  CAS  PubMed  Google Scholar 

  95. Li Q, Cheng Z, Zhou L, Darmanis S, Neff NF, Okamoto J, et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 2019, 101: 207–223.e10.

  96. Schirmer L, Velmeshev D, Holmqvist S, Kaufmann M, Werneburg S, Jung D, et al. Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature 2019, 573: 75–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019, 570: 332–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gerrits E, Heng Y, Boddeke EWGM, Eggen BJL. Transcriptional profiling of microglia; current state of the art and future perspectives. Glia 2020, 68: 740–755.

    Article  PubMed  Google Scholar 

  99. Thrupp N, Sala Frigerio C, Wolfs L, Skene NG, Fattorelli N, Poovathingal S, et al. Single-nucleus RNA-seq is not suitable for detection of microglial activation genes in humans. Cell Rep 2020, 32: 108189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Masuda T, Sankowski R, Staszewski O, Prinz M. Microglia heterogeneity in the single-cell era. Cell Rep 2020, 30: 1271–1281.

    Article  CAS  PubMed  Google Scholar 

  101. Böttcher C, Schlickeiser S, Sneeboer MAM, Kunkel D, Knop A, Paza E, et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat Neurosci 2019, 22: 78–90.

    Article  PubMed  CAS  Google Scholar 

  102. Sankowski R, Böttcher C, Masuda T, Geirsdottir L, Sagar, Sindram E, et al. Mapping microglia states in the human brain through the integration of high-dimensional techniques. Nat Neurosci 2019, 22: 2098–2110.

  103. Salamanca L, Mechawar N, Murai KK, Balling R, Bouvier DS, Skupin A. MIC-MAC: An automated pipeline for high-throughput characterization and classification of three-dimensional microglia morphologies in mouse and human postmortem brain samples. Glia 2019, 67: 1496–1509.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005, 8: 752–758.

    Article  CAS  PubMed  Google Scholar 

  105. Eyo UB, Peng J, Swiatkowski P, Mukherjee A, Bispo A, et al. Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J Neurosci 2014, 34: 10528–10540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Eyo UB, Mo M, Yi MH, Murugan M, Liu J, Yarlagadda R, et al. P2Y12R-dependent translocation mechanisms gate the changing microglial landscape. Cell Rep 2018, 23: 959–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cserép C, Pósfai B, Lénárt N, Fekete R, László ZI, Lele Z, et al. Microglia monitor and protect neuronal function through specialized somatic purinergic junctions. Science 2020, 367: 528–537.

    Article  PubMed  CAS  Google Scholar 

  108. Horton NG, Wang K, Kobat D, Clark CG, Wise FW, Schaffer CB, et al. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat Photonics 2013, 7: 205–209.

    Article  CAS  PubMed Central  Google Scholar 

  109. de Melo Reis RA, Freitas HR, de Mello FG. Cell calcium imaging as a reliable method to study neuron-glial circuits. Front Neurosci 2020, 14: 569361.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Brawek B, Garaschuk O. Microglial calcium signaling in the adult, aged and diseased brain. Cell Calcium 2013, 53: 159–169.

    Article  CAS  PubMed  Google Scholar 

  111. Tvrdik P, Kearns KN, Sharifi KA, Sluzewski MF, Acton ST, Kalani MYS. Calcium imaging of microglial network activity in stroke. Methods Mol Biol 2019, 2034: 267–279.

    Article  CAS  PubMed  Google Scholar 

  112. Edison P, Donat CK, Sastre M. In vivo imaging of glial activation in Alzheimer’s disease. Front Neurol 2018, 9: 625.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Bloomfield PS, Selvaraj S, Veronese M, Rizzo G, Bertoldo A, Owen DR, et al. Microglial activity in people at ultra high risk of psychosis and in schizophrenia: An [11C]PBR28 PET brain imaging study. Am J Psychiatry 2016, 173: 44–52.

    Article  PubMed  Google Scholar 

  114. Kuil LE, Oosterhof N, Ferrero G, Mikulasova T, Hason M, Dekker J, et al. Zebrafish macrophage developmental arrest underlies depletion of microglia and reveals Csf1r-independent metaphocytes. Elife 2020, 9: e53403.

  115. Orczykowski ME, Calderazzo SM, Shobin E, Pessina MA, Oblak AL, Finklestein SP, et al. Cell based therapy reduces secondary damage and increases extent of microglial activation following cortical injury. Brain Res 2019, 1717: 147–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stanhope BA, Jaggard JB, Gratton M, Brown EB, Keene AC. Sleep regulates glial plasticity and expression of the engulfment receptor draper following neural injury. Curr Biol 2020, 30: 1092–1101.e3.

  117. Geirsdottir L, David E, Keren-Shaul H, Weiner A, Bohlen SC, Neuber J, et al. Cross-species single-cell analysis reveals divergence of the primate microglia program. Cell 2019, 179: 1609–1622.e16.

  118. Smith AM, Gibbons HM, Dragunow M. Valproic acid enhances microglial phagocytosis of amyloid-beta(1–42). Neuroscience 2010, 169: 505–515.

    Article  CAS  PubMed  Google Scholar 

  119. Gibbons HM, Smith AM, Teoh HH, Bergin PM, Mee EW, Faull RL, et al. Valproic acid induces microglial dysfunction, not apoptosis, in human glial cultures. Neurobiol Dis 2011, 41: 96–103.

    Article  CAS  PubMed  Google Scholar 

  120. Prinz M, Priller J. Microglia and brain macrophages in the molecular age: From origin to neuropsychiatric disease. Nat Rev Neurosci 2014, 15: 300–312.

    Article  CAS  PubMed  Google Scholar 

  121. Xu J, Zhu L, He S, Wu Y, Jin W, Yu T, et al. Temporal-spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish. Dev Cell 2015, 34: 632–641.

    Article  CAS  PubMed  Google Scholar 

  122. Tavian M, Péault B. Embryonic development of the human hematopoietic system. Int J Dev Biol 2005, 49: 243–250.

    Article  CAS  PubMed  Google Scholar 

  123. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci 2013, 7: 45.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science 2013, 341: 1233158.

    Article  PubMed  CAS  Google Scholar 

  125. Cartier N, Lewis CA, Zhang R, Rossi FM. The role of microglia in human disease: Therapeutic tool or target?. Acta Neuropathol 2014, 128: 363–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Janowska J, Gargas J, Ziemka-Nalecz M, Zalewska T, Buzanska L, Sypecka J. Directed glial differentiation and transdifferentiation for neural tissue regeneration. Exp Neurol 2019, 319: 112813.

    Article  CAS  PubMed  Google Scholar 

  127. Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, et al. Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 2020, 582: 550–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kettenmann H, Banati R, Walz W. Electrophysiological behavior of microglia. Glia 1993, 7: 93–101.

    Article  CAS  PubMed  Google Scholar 

  129. Boucsein C, Kettenmann H, Nolte C. Electrophysiological properties of microglial cells in normal and pathologic rat brain slices. Eur J Neurosci 2000, 12: 2049–2058.

    Article  CAS  PubMed  Google Scholar 

  130. Plescher M, Seifert G, Hansen JN, Bedner P, Steinhäuser C, Halle A. Plaque-dependent morphological and electrophysiological heterogeneity of microglia in an Alzheimer’s disease mouse model. Glia 2018, 66: 1464–1480.

    Article  PubMed  Google Scholar 

  131. Yi MH, Liu YU, Liu K, Chen T, Bosco DB, Zheng J, et al. Chemogenetic manipulation of microglia inhibits neuroinflammation and neuropathic pain in mice. Brain Behav Immun 2021, 92: 78–89.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This review was supported by grants from the National Key Research and Development Program of China (2017YFC0909200), the National Natural Science Foundation of China (81671336), Shanghai Key Laboratory of Psychotic Disorders (YG2016ZD06), and the Shanghai Mental Health Center (2019-YJ06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghong Cui.

Ethics declarations

Conflict of interest

All authors claim that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cui, D. Evolving Models and Tools for Microglial Studies in the Central Nervous System. Neurosci. Bull. 37, 1218–1233 (2021). https://doi.org/10.1007/s12264-021-00706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00706-8

Keywords

Navigation