Skip to main content

Advertisement

Log in

Rac1 Signaling in Amygdala Astrocytes Regulates Fear Memory Acquisition and Retrieval

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The importance of astrocytes in behavior control is increasingly appreciated, but little is known about the effects of their dynamic activity in regulating learning and memory. In the present study, we constructed AAVs of photoactivatable and photoinactivatable Ras-related C3 botulinum toxin substrate 1 (Rac1) under the mGFAP promoter, which enabled the manipulation of Rac1 activity in astrocytes by optical stimulation in free-moving mice. We found that both up-regulation and down-regulation of astrocytic Rac1 activity in the basolateral amygdala (BLA) attenuated memory acquisition in a fear conditioning mouse model. Meanwhile, neuronal activation in the BLA induced by memory acquisition was inhibited under both the up- and down-regulation of astrocytic Rac1 activity during training. In terms of the impact on fear memory retrieval, we found both up- and down-regulation of BLA astrocytic Rac1 activity impaired memory retrieval of fear conditioning and memory retrieval-induced neuronal activation. Notably, the effect of astrocytic Rac1 on memory retrieval was reversible. Our results demonstrate that the normal activity of astrocytic Rac1 is necessary for the activation of neurons and memory formation. Both activation and inactivation of astrocytic Rac1 activity in the BLA reduced the excitability of neurons, and thereby impaired fear memory acquisition and retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Allen NJ, Barres BA. Neuroscience: Glia - more than just brain glue. Nature 2009, 457: 675–677.

    Article  CAS  PubMed  Google Scholar 

  2. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 2006, 7: 41–53.

    Article  CAS  PubMed  Google Scholar 

  3. Araque A, Parpura V, Sanzgiri RP, Haydon PG. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 1999, 22: 208–215.

    Article  CAS  PubMed  Google Scholar 

  4. Allen NJ, Eroglu C. Cell biology of astrocyte-synapse interactions. Neuron 2017, 96: 697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lopez-Bayghen E, Ortega A. Glial glutamate transporters: new actors in brain signaling. IUBMB Life 2011, 63: 816–823.

    Article  CAS  PubMed  Google Scholar 

  6. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY. Astrocytic purinergic signaling coordinates synaptic networks. Science 2005, 310: 113–116.

    Article  CAS  PubMed  Google Scholar 

  7. Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A. Gliotransmitters travel in time and space. Neuron 2014, 81: 728–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Savtchouk I, Volterra A. Gliotransmission: beyond black-and-white. J Neurosci 2018, 38: 14–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Qin C, Zhou LQ, Ma XT, Hu ZW, Yang S, Chen M, et al. Dual functions of microglia in ischemic stroke. Neurosci Bull 2019, 35: 921–933.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Rose CR, Karus C. Two sides of the same coin: sodium homeostasis and signaling in astrocytes under physiological and pathophysiological conditions. Glia 2013, 61: 1191–1205.

    Article  PubMed  Google Scholar 

  11. Kim JJ, Jung MW. Neural circuits and mechanisms involved in Pavlovian fear conditioning: a critical review. Neurosci Biobehav Rev 2006, 30: 188–202.

    Article  PubMed  Google Scholar 

  12. Malleret G, Alarcon JM, Martel G, Takizawa S, Vronskaya S, Yin D, et al. Bidirectional regulation of hippocampal long-term synaptic plasticity and its influence on opposing forms of memory. J Neurosci 2010, 30: 3813–3825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maren S. Synaptic mechanisms of associative memory in the amygdala. Neuron 2005, 47: 783–786.

    Article  CAS  PubMed  Google Scholar 

  14. Rodrigues SM, Schafe GE, LeDoux JE. Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron 2004, 44: 75–91.

    Article  CAS  PubMed  Google Scholar 

  15. Takeuchi T, Duszkiewicz AJ, Morris RG. The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond B Biol Sci 2014, 369: 20130288.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Alberini CM, Cruz E, Descalzi G, Bessieres B, Gao V. Astrocyte glycogen and lactate: New insights into learning and memory mechanisms. Glia 2018, 66: 1244–1262.

    Article  PubMed  Google Scholar 

  17. Logan S, Pharaoh GA, Marlin MC, Masser DR, Matsuzaki S, Wronowski B, et al. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-beta uptake in astrocytes. Mol Metab 2018, 9: 141–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang X, Shen X, Dong J, Liu WC, Song M, Sun Y, et al. Inhibition of reactive astrocytes with fluorocitrate ameliorates learning and memory impairment through upregulating CRTC1 and synaptophysin in ischemic stroke rats. Cell Mol Neurobiol 2019, 39: 1151–1163.

    Article  CAS  PubMed  Google Scholar 

  19. Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 2005, 21: 247–269.

    Article  CAS  PubMed  Google Scholar 

  20. Racchetti G, D’Alessandro R, Meldolesi J. Astrocyte stellation, a process dependent on Rac1 is sustained by the regulated exocytosis of enlargeosomes. Glia 2012, 60: 465–475.

    Article  PubMed  Google Scholar 

  21. Liao Z, Tao Y, Guo X, Cheng D, Wang F, Liu X, et al. Fear conditioning downregulates Rac1 activity in the basolateral amygdala astrocytes to facilitate the formation of fear memory. Front Mol Neurosci 2017, 10: 396.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martinez LA, Klann E, Tejada-Simon MV. Translocation and activation of Rac in the hippocampus during associative contextual fear learning. Neurobiol Learn Mem 2007, 88: 104–113.

    Article  CAS  PubMed  Google Scholar 

  23. Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, Kuhlman B, et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 2009, 461: 104–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou Y, Zhu H, Liu Z, Chen X, Su X, Ma C, et al. A ventral CA1 to nucleus accumbens core engram circuit mediates conditioned place preference for cocaine. Nat Neurosci 2019, 22: 1986–1999.

    Article  CAS  PubMed  Google Scholar 

  25. Couto A, Mack NA, Favia L, Georgiou M. An apicobasal gradient of Rac activity determines protrusion form and position. Nat Commun 2017, 8: 15385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fan XC, Fu S, Liu FY, Cui S, Yi M, Wan Y. Hypersensitivity of prelimbic cortex neurons contributes to aggravated nociceptive responses in rats with experience of chronic inflammatory pain. Front Mol Neurosci 2018, 11: 85.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol 2015, 7: a020412.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Verkhratsky A, Nedergaard M. Physiology of astroglia. Physiol Rev 2018, 98: 239–389.

    Article  CAS  PubMed  Google Scholar 

  29. Ioannou MS, Jackson J, Sheu SH, Chang CL, Weigel AV, Liu H, et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 2019, 177(1522–1535): e1514.

    Google Scholar 

  30. Chung WS, Allen NJ, Eroglu C. Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol 2015, 7: a020370.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Breslin K, Wade JJ, Wong-Lin K, Harkin J, Flanagan B, Van Zalinge H, et al. Potassium and sodium microdomains in thin astroglial processes: A computational model study. PLoS Comput Biol 2018, 14: e1006151.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rose CR, Ziemens D, Untiet V, Fahlke C. Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res Bull 2018, 136: 3–16.

    Article  CAS  PubMed  Google Scholar 

  33. Martin-Fernandez M, Jamison S, Robin LM, Zhao Z, Martin ED, Aguilar J, et al. Synapse-specific astrocyte gating of amygdala-related behavior. Nat Neurosci 2017, 20: 1540–1548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Adamsky A, Kol A, Kreisel T, Doron A, Ozeri-Engelhard N, Melcer T, et al. Astrocytic activation generates de novo neuronal potentiation and memory enhancement. Cell 2018, 174(59–71): e14.

    Google Scholar 

  35. Bechtholt-Gompf AJ, Walther HV, Adams MA, Carlezon WA Jr, Ongur D, Cohen BM. Blockade of astrocytic glutamate uptake in rats induces signs of anhedonia and impaired spatial memory. Neuropsychopharmacology 2010, 35: 2049–2059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, et al. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 2011, 144: 810–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pannasch U, Freche D, Dallerac G, Ghezali G, Escartin C, Ezan P, et al. Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat Neurosci 2014, 17: 549–558.

    Article  CAS  PubMed  Google Scholar 

  38. Poskanzer KE, Yuste R. Astrocytes regulate cortical state switching in vivo. Proc Natl Acad Sci U S A 2016, 113: E2675-2684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Panatier A, Theodosis DT, Mothet JP, Touquet B, Pollegioni L, Poulain DA, et al. Glia-derived D-serine controls NMDA receptor activity and synaptic memory. Cell 2006, 125: 775–784.

    Article  CAS  PubMed  Google Scholar 

  40. Papouin T, Dunphy JM, Tolman M, Dineley KT, Haydon PG. Septal Cholinergic neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness. Neuron 2017, 94(840–854): e847.

    Google Scholar 

  41. Newey SE, Velamoor V, Govek EE, Van Aelst L. Rho GTPases, dendritic structure, and mental retardation. J Neurobiol 2005, 64: 58–74.

    Article  CAS  PubMed  Google Scholar 

  42. Gordon-Weeks PR, Fournier AE. Neuronal cytoskeleton in synaptic plasticity and regeneration. J Neurochem 2014, 129: 206–212.

    Article  CAS  PubMed  Google Scholar 

  43. Tashiro A, Minden A, Yuste R. Regulation of dendritic spine morphology by the rho family of small GTPases: antagonistic roles of Rac and Rho. Cereb Cortex 2000, 10: 927–938.

    Article  CAS  PubMed  Google Scholar 

  44. Tashiro A, Yuste R. Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci 2004, 26: 429–440.

    Article  CAS  PubMed  Google Scholar 

  45. Fan L, Lu Y, Shen X, Shao H, Suo L, Wu Q. Alpha protocadherins and Pyk2 kinase regulate cortical neuron migration and cytoskeletal dynamics via Rac1 GTPase and WAVE complex in mice. Elife 2018, 7: e35242.

  46. Vaghi V, Pennucci R, Talpo F, Corbetta S, Montinaro V, Barone C, et al. Rac1 and rac3 GTPases control synergistically the development of cortical and hippocampal GABAergic interneurons. Cereb Cortex 2014, 24: 1247–1258.

    Article  PubMed  Google Scholar 

  47. Posada-Duque RA, Lopez-Tobon A, Piedrahita D, Gonzalez-Billault C, Cardona-Gomez GP. p35 and Rac1 underlie the neuroprotection and cognitive improvement induced by CDK5 silencing. J Neurochem 2015, 134: 354–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the China Postdoctoral Science Foundation (BX20180070 and 2019M661347), and the National Natural Science Foundation of China (31930046 and 31771176).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Liu or Lan Ma.

Ethics declarations

Conflict of interest

The authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, XC., Ma, CN., Song, JC. et al. Rac1 Signaling in Amygdala Astrocytes Regulates Fear Memory Acquisition and Retrieval. Neurosci. Bull. 37, 947–958 (2021). https://doi.org/10.1007/s12264-021-00677-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00677-w

Keywords

Navigation