Skip to main content
Log in

Electroacupuncture Alleviates Motor Symptoms and Up-Regulates Vesicular Glutamatergic Transporter 1 Expression in the Subthalamic Nucleus in a Unilateral 6-Hydroxydopamine-Lesioned Hemi-Parkinsonian Rat Model

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Previous studies have shown that electroacupuncture (EA) promotes recovery of motor function in Parkinson’s disease (PD). However the mechanisms are not completely understood. Clinically, the subthalamic nucleus (STN) is a critical target for deep brain stimulation treatment of PD, and vesicular glutamate transporter 1 (VGluT1) plays an important role in the modulation of glutamate in the STN derived from the cortex. In this study, a 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD was treated with 100 Hz EA for 4 weeks. Immunohistochemical analysis of tyrosine hydroxylase (TH) showed that EA treatment had no effect on TH expression in the ipsilateral striatum or substantia nigra pars compacta, though it alleviated several of the parkinsonian motor symptoms. Compared with the hemi-parkinsonian rats without EA treatment, the 100 Hz EA treatment significantly decreased apomorphine-induced rotation and increased the latency in the Rotarod test. Notably, the EA treatment reversed the 6-OHDA-induced down-regulation of VGluT1 in the STN. The results demonstrated that EA alleviated motor symptoms and up-regulated VGluT1 in the ipsilateral STN of hemi-parkinsonian rats, suggesting that up-regulation of VGluT1 in the STN may be related to the effects of EA on parkinsonian motor symptoms via restoration of function in the cortico-STN pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 1973, 20: 415–455.

    Article  PubMed  CAS  Google Scholar 

  2. Dewey RB, Jr. Management of motor complications in Parkinson’s disease. Neurology 2004, 62: S3–S7.

    Article  PubMed  Google Scholar 

  3. Saint-Cyr JA, Taylor AE, Lang AE. Neuropsychological and psychiatric side effects in the treatment of Parkinson’s disease. Neurology 1993, 43: S47–S52.

    PubMed  CAS  Google Scholar 

  4. Liang XB, Liu XY, Li FQ, Luo Y, Lu J, Zhang WM, et al. Long-term high-frequency electro-acupuncture stimulation prevents neuronal degeneration and up-regulates BDNF mRNA in the substantia nigra and ventral tegmental area following medial forebrain bundle axotomy. Brain Res Mol Brain Res 2002, 108: 51–59.

    Article  PubMed  CAS  Google Scholar 

  5. Sun Z, Jia J, Gong X, Jia Y, Deng J, Wang X, et al. Inhibition of glutamate and acetylcholine release in behavioral improvement induced by electroacupuncture in parkinsonian rats. Neurosci Lett 2012, 520: 32–37.

    Article  PubMed  CAS  Google Scholar 

  6. Jia J, Sun Z, Li B, Pan Y, Wang H, Wang X, et al. Electro-acupuncture stimulation improves motor disorders in Parkinsonian rats. Behav Brain Res 2009, 205: 214–218.

    Article  PubMed  Google Scholar 

  7. Jia J, Li B, Sun ZL, Yu F, Wang X, Wang XM. Electro-acupuncture stimulation acts on the basal ganglia output pathway to ameliorate motor impairment in Parkinsonian model rats. Behav Neurosci 2010, 124: 305–310.

    Article  PubMed  Google Scholar 

  8. Deng J, Lv E, Yang J, Gong X, Zhang W, Liang X, et al. Electroacupuncture remediates glial dysfunction and ameliorates neurodegeneration in the astrocytic alpha-synuclein mutant mouse model. J Neuroinflammation 2015, 12: 103–116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Liu XY, Zhou HF, Pan YL, Liang XB, Niu DB, Xue B, et al. Electro-acupuncture stimulation protects dopaminergic neurons from inflammation-mediated damage in medial forebrain bundle-transected rats. Exp Neurol 2004, 189: 189–196.

    Article  PubMed  CAS  Google Scholar 

  10. Lv E, Deng J, Yu Y, Wang Y, Gong X, Jia J, et al. Nrf2-ARE signals mediated the anti-oxidative action of electroacupuncture in an MPTP mouse model of Parkinson’s disease. Free Radic Res 2015, 49: 1296–1307.

    Article  PubMed  CAS  Google Scholar 

  11. Wang HM, Pan YL, Xue B, Wang X, Zhao F, Jia J, et al. The antioxidative effect of electro-acupuncture in a mouse model of Parkinson’s disease. PLoS One 2011, 6: e19790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Liang XB, Luo Y, Liu XY, Lu J, Li FQ, Wang Q, et al. Electro-acupuncture improves behavior and upregulates GDNF mRNA in MFB transected rats. Neuroreport 2003, 14: 1177–1181.

    Article  PubMed  Google Scholar 

  13. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989, 12: 366–375.

    Article  PubMed  CAS  Google Scholar 

  14. Nambu A, Tokuno H, Takada M. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci Res 2002, 43: 111–117.

    Article  PubMed  Google Scholar 

  15. Bergman H, Wichmann T, Karmon B, DeLong MR. The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 1994, 72: 507–520.

    Article  PubMed  CAS  Google Scholar 

  16. Moshel S, Shamir RR, Raz A, de Noriega FR, Eitan R, Bergman H, et al. Subthalamic nucleus long-range synchronization-an independent hallmark of human Parkinson’s disease. Front Syst Neurosci 2013, 7: 79–92.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shimamoto SA, Ryapolova-Webb ES, Ostrem JL, Galifianakis NB, Miller KJ, Starr PA. Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in Parkinson’s disease. J Neurosci 2013, 33: 7220–7233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Baudrexel S, Witte T, Seifried C, von Wegner F, Beissner F, Klein JC, et al. Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson’s disease. Neuroimage 2011, 55: 1728–1738.

    Article  PubMed  Google Scholar 

  19. Janssen ML, Temel Y, Delaville C, Zwartjes DG, Heida T, De Deurwaerdere P, et al. Cortico-subthalamic inputs from the motor, limbic, and associative areas in normal and dopamine-depleted rats are not fully segregated. Brain Struct Funct 2016, 221: 1–13.

    Google Scholar 

  20. Fremeau RT, Jr., Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, et al. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 2001, 31: 247–260.

    Article  PubMed  CAS  Google Scholar 

  21. Mathai A, Ma Y, Pare JF, Villalba RM, Wichmann T, Smith Y. Reduced cortical innervation of the subthalamic nucleus in MPTP-treated parkinsonian monkeys. Brain 2015, 138: 946–962.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chu HY, McIver EL, Kovaleski RF, Atherton JF, Bevan MD. Loss of hyperdirect pathway cortico-subthalamic inputs following degeneration of midbrain dopamine neurons. Neuron 2017, 95: 1306–1318. e5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Wang YY, Wang Y, Jiang HF, Liu JH, Jia J, Wang K, et al. Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats. Exp Neurol 2017, 300: 135–148.

    Article  PubMed  CAS  Google Scholar 

  24. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 1998, 339: 1105–1111.

    Article  PubMed  CAS  Google Scholar 

  25. Malkki H. Parkinson disease: deep brain stimulation might alleviate parkinsonism by reducing excessive synchronization in primary motor cortex. Nat Rev Neurol 2015, 11: 246.

    Article  PubMed  Google Scholar 

  26. Sun M, Wang K, Yu Y, Su WT, Jiang XX, Yang J, et al. Electroacupuncture alleviates depressive-like symptoms and modulates BDNF signaling in 6-hydroxydopamine rats. Evid Based Complement Alternat Med 2016, 2016: 7842362.

    PubMed  PubMed Central  Google Scholar 

  27. Watson C, Paxinos G. The Rat Brain in Stereotaxic Coordinates 6th Edition. Academic Press, 2007: 1–463.

  28. Swanger SA, Vance KM, Pare JF, Sotty F, Fog K, Smith Y, et al. NMDA receptors containing the GluN2D subunit control neuronal function in the subthalamic nucleus. J Neurosci 2015, 35: 15971–15983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zeng WB, Jiang HF, Gang YD, Song YG, Shen ZZ, Yang H, et al. Anterograde monosynaptic transneuronal tracers derived from herpes simplex virus 1 strain H129. Mol Neurodegener 2017, 12: 38–54.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 2015, 162: 622–634.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tao K, Wang B, Feng D, Zhang W, Lu F, Lai J, et al. Salidroside protects against 6-hydroxydopamine-induced cytotoxicity by attenuating ER stress. Neurosci Bull 2016, 32: 61–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhao Q, Yang X, Cai D, Ye L, Hou Y, Zhang L, et al. Echinacoside protects against MPP(+)-induced neuronal apoptosis via ROS/ATF3/CHOP pathway regulation. Neurosci Bull 2016, 32: 349–362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Limousin P, Pollak P, Benazzouz A, Hoffmann D, Le Bas JF, Broussolle E, et al. Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet 1995, 345: 91–95.

    Article  PubMed  CAS  Google Scholar 

  34. DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol 2007, 64: 20–24.

    Article  PubMed  Google Scholar 

  35. Mink JW, Thach WT. Basal ganglia intrinsic circuits and their role in behavior. Curr Opin Neurobiol 1993, 3: 950–957.

    Article  PubMed  CAS  Google Scholar 

  36. Gasnier B. The loading of neurotransmitters into synaptic vesicles. Biochimie 2000, 82: 327–337.

    Article  PubMed  CAS  Google Scholar 

  37. Li Q, Ke Y, Chan DC, Qian ZM, Yung KK, Ko H, et al. Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron 2012, 76: 1030–1041.

    Article  PubMed  CAS  Google Scholar 

  38. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Optical deconstruction of parkinsonian neural circuitry. Science 2009, 324: 354–359.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Beijing Municipal Science and Technology Commission (Z161100002616007), the National Key Research and Development Program (2016YFC1306300), the Major Program of the National Natural Science Foundation of China (81527901), and the Natural Science Foundation of Beijing Municipality (7082008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Wang or Xiaomin Wang.

Ethics declarations

Conflict of interest

All authors claim that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Y., Liu, J. et al. Electroacupuncture Alleviates Motor Symptoms and Up-Regulates Vesicular Glutamatergic Transporter 1 Expression in the Subthalamic Nucleus in a Unilateral 6-Hydroxydopamine-Lesioned Hemi-Parkinsonian Rat Model. Neurosci. Bull. 34, 476–484 (2018). https://doi.org/10.1007/s12264-018-0213-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-018-0213-y

Keywords

Navigation