Skip to main content
Log in

Mapping the Information Trace in Local Field Potentials by a Computational Method of Two-Dimensional Time-Shifting Synchronization Likelihood Based on Graphic Processing Unit Acceleration

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The local field potential (LFP) is a signal reflecting the electrical activity of neurons surrounding the electrode tip. Synchronization between LFP signals provides important details about how neural networks are organized. Synchronization between two distant brain regions is hard to detect using linear synchronization algorithms like correlation and coherence. Synchronization likelihood (SL) is a non-linear synchronization-detecting algorithm widely used in studies of neural signals from two distant brain areas. One drawback of non-linear algorithms is the heavy computational burden. In the present study, we proposed a graphic processing unit (GPU)-accelerated implementation of an SL algorithm with optional 2-dimensional time-shifting. We tested the algorithm with both artificial data and raw LFP data. The results showed that this method revealed detailed information from original data with the synchronization values of two temporal axes, delay time and onset time, and thus can be used to reconstruct the temporal structure of a neural network. Our results suggest that this GPU-accelerated method can be extended to other algorithms for processing time-series signals (like EEG and fMRI) using similar recording techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gloor P. Neuronal generators and the problem of localization in electroencephalography: application of volume conductor theory to electroencephalography. J Clin Neurophysiol 1985, 2: 327–354.

    Article  CAS  PubMed  Google Scholar 

  2. Pascual-Marqui RD. Review of methods for solving the EEG inverse problem. Int J Bioelectromagn 1999, 1: 75–86.

    Google Scholar 

  3. Siebenhühner F, Lobier M, Wang SH, Palva S, Palva JM. Measuring large-scale synchronization with human MEG and EEG: challenges and solutions. In: Palva S (Ed.). Multimodal Oscillation-Based Connectivity Theory. Springer, 2016: 1–18.

  4. Sirota A, Montgomery S, Fujisawa S, Isomura Y, Zugaro M, Buzsáki Gr. Entrainment of neocortical neurons and gamma oscillations by the hippocampal theta rhythm. Neuron 2008, 60: 683–697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yamamoto J, Suh J, Takeuchi D, Tonegawa S. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell 2014, 157: 845–857.

    Article  CAS  PubMed  Google Scholar 

  6. Adhikari A, Sigurdsson T, Topiwala MA, Gordon JA. Cross-correlation of instantaneous amplitudes of field potential oscillations: a straightforward method to estimate the directionality and lag between brain areas. J Neurosci Methods 2010, 191: 191–200.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Baria AT, Mansour A, Huang L, Baliki MN, Cecchi GA, Mesulam MM, et al. Linking human brain local activity fluctuations to structural and functional network architectures. NeuroImage 2013, 73: 144–155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kuo M-F, Nitsche MA. Exploring prefrontal cortex functions in healthy humans by transcranial electrical stimulation. Neurosci Bull 2015, 31: 198–206.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Buzsaki G, Mizuseki K. The log-dynamic brain: how skewed distributions affect network operations. Nat Rev Neurosci 2014, 15: 264–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schomburg EW, Fernández-Ruiz A, Mizuseki K, Berényi A, Anastassiou CA, Koch C, et al. Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks. Neuron 2014, 84: 470–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang J, Li D, Li X, Liu FY, Xing GG, Cai J, et al. Phase-amplitude coupling between theta and gamma oscillations during nociception in rat electroencephalography. Neurosci Lett 2011, 499: 84–87.

    Article  CAS  PubMed  Google Scholar 

  12. Gareth B. Do sustained and long range zero-phase lag correlations develop in the human brain? Front Neurosci 2010, 4: 486–493.

    Google Scholar 

  13. Yu H, Liu J, Cai L, Wang J, Cao Y, Hao C. Functional brain networks in healthy subjects under acupuncture stimulation: an EEG study based on nonlinear synchronization likelihood analysis. Phys A Stat Mech Appl 2017, 468: 566–577.

    Article  Google Scholar 

  14. Montez T, Linkenkaer-Hansen K, van Dijk BW, Stam CJ. Synchronization likelihood with explicit time-frequency priors. NeuroImage 2006, 33: 1117–1125.

    Article  CAS  PubMed  Google Scholar 

  15. Stam C, Van Dijk B. Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Phys D Nonlinear Phenom 2002, 163: 236–251.

    Article  Google Scholar 

  16. Hipp JF, Hawellek DJ, Corbetta M, Siegel M, Engel AK. Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat Neurosci 2012, 15: 884–890.

    Article  CAS  PubMed  Google Scholar 

  17. Kaplan R, Adhikari MH, Hindriks R, Mantini D, Murayama Y, Logothetis NK, et al. Hippocampal sharp-wave ripples influence selective activation of the default mode network. Curr Biol 2016, 26: 686–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ramirez-Villegas JF, Logothetis NK, Besserve M. Diversity of sharp-wave-ripple LFP signatures reveals differentiated brain-wide dynamical events. Proc Natl Acad Sci U S A 2015, 112: E6379–E6387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gregoriou GG, Gotts SJ, Zhou H, Desimone R. High-frequency, long-range coupling between prefrontal and visual cortex during attention. Science 2009, 324: 1207–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Salinas E, Sejnowski TJ. Correlated neuronal activity and the flow of neural information. Nat Rev Neurosci 2001, 2: 539–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pijn JP, da Silva FL. Propagation of electrical activity: nonlinear associations and time delays between EEG signals. Basic Mech EEG 1993: 41–61.

  22. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC. GPU computing. Proc IEEE 2008, 96: 879–899.

    Article  Google Scholar 

  23. Rossant C, Kadir SN, Goodman DF, Schulman J, Hunter ML, Saleem AB, et al. Spike sorting for large, dense electrode arrays. Nat Neurosci 2016, 19: 634–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Richert M, Nageswaran JM, Dutt N, Krichmar JL. An efficient simulation environment for modeling large-scale cortical processing. Front Neuroinform 2011, 5: 19.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kapinchev K, Bradu A, Barnes F, Podoleanu A. GPU implementation of cross-correlation for image generation in real time. Int Conf Signal Process Commun Syst 2015: 1–6.

  26. Buzsaki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci 2012, 35: 203–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Eto K, Wake H, Watanabe M, Ishibashi H, Noda M, Yanagawa Y, et al. Inter-regional contribution of enhanced activity of the primary somatosensory cortex to the anterior cingulate cortex accelerates chronic pain behavior. J Neurosci 2011, 31: 7631–7636.

    Article  CAS  PubMed  Google Scholar 

  28. Ploner M, Sorg C, Gross J. Brain rhythms of pain. Trends Cognit Sci 2017, 21:100–110.

    Article  Google Scholar 

  29. Ossipov MH, Dussor GO. Central modulation of pain. J Clin Investig 2010, 120: 3779–3787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tracey I, Johns E. The pain matrix: reloaded or reborn as we image tonic pain using arterial spin labelling. Pain 2010, 148: 359–360.

    Article  PubMed  Google Scholar 

  31. Chen LM, Dillenburger BC, Wang F, Friedman RM, Avison MJ. High-resolution functional magnetic resonance imaging mapping of noxious heat and tactile activations along the central sulcus in New World monkeys. Pain 2011, 152: 522–532.

    Article  PubMed  Google Scholar 

  32. Liu CC, Veldhuijzen DS, Ohara S, Winberry J, Greenspan DJ, Lenz AF. Spatial attention to thermal pain stimuli in subjects with visual spatial hemi-neglect: extinction, mislocalization and misidentification of stimulus modality. Pain 2011, 152: 498–506.

    Article  CAS  PubMed  Google Scholar 

  33. Diers M, Christmann C, Koeppe C, Ruf M, Flor H. Mirrored, imagined and executed movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain. Pain 2010, 149: 296–304.

    Article  PubMed  Google Scholar 

  34. Yoshino A, Okamoto Y, Onoda K, Yoshimura S, Kunisato Y, Demoto Y, et al. Sadness enhances the experience of pain via neural activation in the anterior cingulate cortex and amygdala: an fMRI study. Neuroimage 2010, 50: 1194–1201.

    Article  PubMed  Google Scholar 

  35. Friebel U, Eickhoff SB, Lotze M. Coordinate-based meta-analysis of experimentally induced and chronic persistent neuropathic pain. Neuroimage 2011, 58: 1070–1080.

    Article  PubMed  Google Scholar 

  36. Moisset X, Bouhassira D. Brain imaging of neuropathic pain. Neuroimage 2007, 37: S80–S88.

    Article  PubMed  Google Scholar 

  37. Price DD. Psychological and neural mechanisms of the affective dimension of pain. Science 2000, 288: 1769.

    Article  CAS  PubMed  Google Scholar 

  38. Gersch W. Causality or driving in electrophysiological signal analysis. Math Biosci 1972, 14: 177–196.

    Article  Google Scholar 

  39. Li X, Ouyang G. Estimating coupling direction between neuronal populations with permutation conditional mutual information. NeuroImage 2010, 52: 497–507.

    Article  PubMed  Google Scholar 

  40. Quiroga RQ, Kraskov A, Kreuz T, Grassberger P. Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys Rev E Stat Nonlinear Soft Matter Phys 2005, 65: 041903.

    Article  Google Scholar 

  41. Demariedreblow D. Relation between knowledge and memory: a reminder that correlation does not imply causality. Child Dev 1991, 62: 484–498.

    Article  Google Scholar 

  42. Aldrich J. Correlations genuine and spurious in Pearson and Yule. Stat Sci 1995, 10: 364–376.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Natural Science Foundation of China (81230023, 81571067, and 81521063), National Basic Research Development Program (973 Program) of China (2013CB531905), and the “111” Project of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You Wan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, ZF., Li, XZ. & Wan, Y. Mapping the Information Trace in Local Field Potentials by a Computational Method of Two-Dimensional Time-Shifting Synchronization Likelihood Based on Graphic Processing Unit Acceleration. Neurosci. Bull. 33, 653–663 (2017). https://doi.org/10.1007/s12264-017-0175-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-017-0175-5

Keywords

Navigation