Skip to main content

Advertisement

Log in

The Current Situation on Major Depressive Disorder in China: Research on Mechanisms and Clinical Practice

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Depression is the most disabling disorder worldwide that accounts for the highest proportion of global burden attributable to mental disorders. Major depressive disorder (MDD) is characterized by deep sadness, reduced energy, vegetative nervous system dysregulation, cognitive dysfunction, and even a high suicidal tendency. Although other treatment choices are available, antidepressant medication is the front-line treatment option for MDD. Regarding clinical efficacy, only ~50% of patients respond to frontline antidepressants, and <33% obtain remission. Currently, objective indexes to guide clinical decisions are still lacking. Furthermore, knowledge about the neurobiological mechanisms underlying discrepant antidepressant outcomes is still also fragmentary. In the present review, we discuss the current research progress and clinical opinions on MDD in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2003, 289(23): 3095–3105.

    Article  PubMed  Google Scholar 

  2. Lepine BA, Moreno RA, Campos RN, Couttolenc BF. Treatment-resistant depression increases health costs and resource utilization. Rev Bras Psiquiatr 2012, 34: 379–388.

    Article  PubMed  Google Scholar 

  3. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry 2006, 163: 1905–1917.

    Article  PubMed  Google Scholar 

  4. Kessler RC. The costs of depression. Psychiatr Clin North Am 2012, 35: 1–14.

    Article  PubMed  Google Scholar 

  5. World Health Organization. World Health Statistics. Geneva, Switzerland. World Health Organization Press, 2010.

    Google Scholar 

  6. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet 2013, 382: 1575–1586.

    Article  PubMed  Google Scholar 

  7. Gu L, Xie J, Long J, Chen Q, Chen Q, Pan R, et al. Epidemiology of major depressive disorder in mainland china: a systematic review. PLoS One 2013, 8: e65356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu J, Ruan Y, Huang Y, Yao J, Dang W, Gao C. Major depression in Kunming: prevalence, correlates and co-morbidity in a south-western city of China. J Affect Disord 2008, 111: 221–226.

    Article  PubMed  Google Scholar 

  9. Lee S, Tsang A, Huang YQ, He YL, Liu ZR, Zhang MY, et al. The epidemiology of depression in metropolitan China. Psychol Med 2009, 39: 735–747.

    Article  CAS  PubMed  Google Scholar 

  10. Liao SC, Chen WJ, Lee MB, Lung FW, Lai TJ, Liu CY, et al. Low prevalence of major depressive disorder in Taiwanese adults: possible explanations and implications. Psychol Med 2012, 42: 1227–1237.

    Article  PubMed  Google Scholar 

  11. Li W, Meng X, Xu Z, Yu Q, Shi J, Yu Y, et al. Prevalence, correlates of major depression: A mental health survey among undergraduates at a mainland Chinese university. Asia Pac Psychiatry 2015. doi: 10.1111/appy.12202.

    Google Scholar 

  12. Phillips MR, Zhang J, Shi Q, Song Z, Ding Z, Pang S, et al. Prevalence, treatment, and associated disability of mental disorders in four provinces in China during 2001–05: an epidemiological survey. Lancet 2009, 373: 2041–2053.

    Article  PubMed  Google Scholar 

  13. Smith K. Mental health: a world of depression. Nature 2014, 515: 181.

    PubMed  Google Scholar 

  14. Qin X, Wang W, Jin Q, Ai L, Li Y, Dong G, et al. Prevalence and rates of recognition of depressive disorders in internal medicine outpatient departments of 23 general hospitals in Shenyang, China. J Affect Disord 2008, 110: 46–54.

    Article  PubMed  Google Scholar 

  15. Zhu YY, Jing L, Duan TT, Yuan Q, Cao J, Zhou QX, et al. Patterned high-frequency stimulation induces a form of long-term depression dependent on GABAA and mACh receptors in the hippocampus. Neuroscience 2013, 250: 658–663.

    Article  CAS  PubMed  Google Scholar 

  16. Xu S, Chai H, Hu J, Xu Y, Chen W, Wang W. Passive event-related potentials to a single tone in treatment-resistant depression, generalized anxiety disorder, and borderline personality disorder patients. J Clin Neurophysiol 2014, 31(5): 488–492.

    Article  PubMed  Google Scholar 

  17. Wang D, Mo F, Zhang Y, Yang C, Liu J, Chen Z, et al. Auditory evoked potentials in patients with major depressive disorder measured by Emotiv system. Biomed Mater Eng 2015, 26 Suppl 1: S917–S923.

    PubMed  Google Scholar 

  18. Xi G, Zhang X, Zhang L, Sui Y, Hui J, Liu S, et al. Fluoxetine attenuates the inhibitory effect of glucocorticoid hormones on neurogenesis in vitro via a two-pore domain potassium channel, TREK-1. Psychopharmacology (Berl) 2011, 214: 747–759.

    Article  CAS  Google Scholar 

  19. Yi LT, Luo L, Wu YJ, Liu BB, Liu XL, Geng D, et al. Circadian variations in behaviors, BDNF and cell proliferation in depressive mice. Metab Brain Dis 2015, 30(6):1–9.

    Article  Google Scholar 

  20. Hong W, Fan J, Yuan C, Zhang C, Hu Y, Peng D, et al. Significantly decreased mRNA levels of BDNF and MEK1 genes in treatment-resistant depression. Neuroreport 2014, 25: 753–755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo J, Min S, Wei K, Cao J, Wang B, Li P, et al. Behavioral and molecular responses to electroconvulsive shock differ between genetic and environmental rat models of depression. Psychiatry Res 2015, 226: 451–460.

    Article  CAS  PubMed  Google Scholar 

  22. Su M, Hong J, Zhao Y, Liu S, Xue X. MeCP2 controls hippocampal brain-derived neurotrophic factor expression via homeostatic interactions with microRNA132 in rats with depression. Mol Med Rep 2015, 12: 5399–5406.

    CAS  PubMed  Google Scholar 

  23. Xi G, Hui J, Zhang Z, Liu S, Zhang X, Teng G, et al. Learning and memory alterations are associated with hippocampal N-acetylaspartate in a rat model of depression as measured by 1H-MRS. PLoS One 2011, 6: e28686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yan HC, Cao X, Das M, Zhu XH, Gao TM. Behavioral animal models of depression. Neurosci Bull 2010, 26: 327–337.

    Article  CAS  PubMed  Google Scholar 

  25. Yang C, Hong T, Shen J, Ding J, Dai XW, Zhou ZQ, et al. Ketamine exerts antidepressant effects and reduces IL-1beta and IL-6 levels in rat prefrontal cortex and hippocampus. Exp Ther Med 2013, 5: 1093–1096.

    PubMed  PubMed Central  Google Scholar 

  26. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 2010, 329: 959–964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Jing L, Toledo-Salas JC, Xu L. Rapid-onset antidepressant efficacy of glutamatergic system modulators: the neural plasticity hypothesis of depression. Neurosci Bull 2015, 31: 75–86.

    Article  PubMed  Google Scholar 

  28. Chen C, Glatt SJ, Tsuang MT. The tryptophan hydroxylase gene influences risk for bipolar disorder but not major depressive disorder: results of meta-analyses. Bipolar Disord 2008, 10: 816–821.

    Article  PubMed  Google Scholar 

  29. Li Z, Zhang Y, Wang Z, Chen J, Fan J, Guan Y, et al. The role of BDNF, NTRK2 gene and their interaction in development of treatment-resistant depression: data from multicenter, prospective, longitudinal clinic practice. J Psychiatr Res 2013, 47: 8–14.

    Article  PubMed  Google Scholar 

  30. Pei Y, Smith AK, Wang Y, Pan Y, Yang J, Chen Q, et al. The brain-derived neurotrophic-factor (BDNF) val66met polymorphism is associated with geriatric depression: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2012, 159B: 560–566.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xiao Z, Liu W, Gao K, Wan Q, Yang C, Wang H, et al. Interaction between CRHR1 and BDNF genes increases the risk of recurrent major depressive disorder in Chinese population. PLoS One 2011, 6: e28733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shen X, Wu Y, Guan T, Wang X, Qian M, Lin M, et al. Association analysis of COMT/MTHFR polymorphisms and major depressive disorder in Chinese Han population. J Affect Disord 2014, 161: 73–78.

    Article  CAS  PubMed  Google Scholar 

  33. Xu Z, Zhang Z, Shi Y, Pu M, Yuan Y, Zhang X, et al. Influence and interaction of genetic polymorphisms in catecholamine neurotransmitter systems and early life stress on antidepressant drug response. J Affect Disord 2011, 133: 165–173.

    Article  CAS  PubMed  Google Scholar 

  34. Wang HC, Yeh TL, Chang HH, Gean PW, Chi MH, Yang YK, et al. TPH1 is associated with major depressive disorder but not with SSRI/SNRI response in Taiwanese patients. Psychopharmacology (Berl) 2011, 213: 773–779.

    Article  CAS  Google Scholar 

  35. Li X, Sun N, Xu Y, Wang Y, Li S, Du Q, et al. The norepinephrine transporter gene is associated with the retardation symptoms of major depressive disorder in the Han Chinese population. Neural Regen Res 2012, 7: 1985–1991.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yi Z, Li Z, Yu S, Yuan C, Hong W, Wang Z, et al. Blood-based gene expression profiles models for classification of subsyndromal symptomatic depression and major depressive disorder. PLoS One 2012, 7: e31283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu Z, Huang L, Luo XJ, Wu L, Li M. MAOA variants and genetic susceptibility to major psychiatric disorders. Mol Neurobiol 2015. doi: 10.1007/s12035-015-9374-0.

    Google Scholar 

  38. Cai N, Bigdeli TB, Kretzschmar W, Li Y, Liang J, Song L, et al. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 2015, 523: 588–591.

    Article  CAS  Google Scholar 

  39. Wang P, Yang Y, Yang X, Qiu X, Qiao Z, Wang L, et al. CREB1 gene polymorphisms combined with environmental risk factors increase susceptibility to major depressive disorder (MDD). Int J Clin Exp Pathol 2015, 8: 906–913.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Xu Z, Zhang Z, Shi Y, Pu M, Yuan Y, Zhang X, et al. Influence and interaction of genetic polymorphisms in the serotonin system and life stress on antidepressant drug response. J Psychopharmacol 2012, 26: 349–359.

    Article  CAS  PubMed  Google Scholar 

  41. Hou Z, Yuan Y, Zhang Z, Hou G, You J, Bai F. The D-allele of ACE insertion/deletion polymorphism is associated with regional white matter volume changes and cognitive impairment in remitted geriatric depression. Neurosci Lett 2010, 479: 262–266.

    Article  CAS  PubMed  Google Scholar 

  42. Yang C, Xu Y, Sun N, Ren Y, Liu Z, Cao X, et al. The combined effects of the BDNF and GSK3B genes modulate the relationship between negative life events and major depressive disorder. Brain Res 2010, 1355: 1–6.

    Article  CAS  PubMed  Google Scholar 

  43. Liu Z, Guo H, Cao X, Cheng C, Yang C, Xu C, et al. A combined study of GSK3beta polymorphisms and brain network topological metrics in major depressive disorder. Psychiatry Res 2014, 223: 210–217.

    Article  PubMed  Google Scholar 

  44. Hou ZH, Yuan YG. The progress of imaging genetics in depression. Chinese J Psychiat 2009, 42: 185–187.

    CAS  Google Scholar 

  45. Fang Z, Zhu S, Gillihan SJ, Korczykowski M, Detre JA, Rao H. Serotonin transporter genotype modulates functional connectivity between amygdala and PCC/PCu during mood recovery. Front Hum Neurosci 2013, 7: 704.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wang Z, Yuan Y, Bai F, You J, Li L, Zhang Z. Abnormal default-mode network in angiotensin converting enzyme D allele carriers with remitted geriatric depression. Behav Brain Res 2012, 230: 325–332.

    Article  CAS  PubMed  Google Scholar 

  47. Yin Y, Hou Z, Wang X, Sui Y, Yuan Y. The BDNF Val66Met polymorphism, resting-state hippocampal functional connectivity and cognitive deficits in acute late-onset depression. J Affect Disord 2015, 183: 22–30.

    Article  CAS  PubMed  Google Scholar 

  48. Chen J, Xu Y, Zhang J, Liu Z, Xu C, Zhang K, et al. Genotypic association of the DAOA gene with resting-state brain activity in major depression. Mol Neurobiol 2012, 46: 361–373.

    Article  CAS  PubMed  Google Scholar 

  49. Liu CH, Ma X, Song LP, Tang LR, Jing B, Zhang Y, et al. Alteration of spontaneous neuronal activity within the salience network in partially remitted depression. Brain Res 2015, 1599: 93–102.

    Article  CAS  PubMed  Google Scholar 

  50. Chen Y, Wang C, Zhu X, Tan Y, Zhong Y. Aberrant connectivity within the default mode network in first-episode, treatment-naive major depressive disorder. J Affect Disord 2015, 183: 49–56.

    Article  PubMed  Google Scholar 

  51. Peng D, Liddle EB, Iwabuchi SJ, Zhang C, Wu Z, Liu J, et al. Dissociated large-scale functional connectivity networks of the precuneus in medication-naive first-episode depression. Psychiatry Res 2015, 232: 250–256.

    Article  PubMed  Google Scholar 

  52. Guo W, Liu F, Yu M, Zhang J, Zhang Z, Liu J, et al. Decreased regional activity and network homogeneity of the fronto-limbic network at rest in drug-naive major depressive disorder. Aust N Z J Psychiatry 2015, 49: 550–556.

    Article  PubMed  Google Scholar 

  53. Guo W, Liu F, Xiao C, Zhang Z, Liu J, Yu M, et al. Decreased insular connectivity in drug-naive major depressive disorder at rest. J Affect Disord 2015, 179: 31–37.

    Article  PubMed  Google Scholar 

  54. Guo W, Liu F, Liu J, Yu M, Zhang Z, Liu G, et al. Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine (Baltimore) 2015, 94: e560.

    Article  Google Scholar 

  55. Zheng H, Xu L, Xie F, Guo X, Zhang J, Yao L, et al. The Altered Triple Networks Interaction in Depression under Resting State Based on Graph Theory. Biomed Res Int 2015, 2015: 386326.

    PubMed  PubMed Central  Google Scholar 

  56. Su L, Cai Y, Xu Y, Dutt A, Shi S, Bramon E. Cerebral metabolism in major depressive disorder: a voxel-based meta-analysis of positron emission tomography studies. BMC Psychiatry 2014, 14: 321.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Luo H, Tang JY, Wong GH, Chen CC, Lum TY, Chi I, et al. The Effect of Depressive Symptoms and Antidepressant Use on Subsequent Physical Decline and Number of Hospitalizations in Nursing Home Residents: A 9-Year Longitudinal Study. J Am Med Dir Assoc 2015, 16:1048–1054.

    Article  PubMed  Google Scholar 

  58. Kuo CL, Chien IC, Lin CH, Cheng SW. Trends, correlates, and disease patterns of antidepressant use among elderly persons in Taiwan. Soc Psychiatry Psychiatr Epidemiol 2015, 50: 1407–1415.

    Article  PubMed  Google Scholar 

  59. Zhang Y, Becker T, Ma Y, Koesters M. A systematic review of Chinese randomized clinical trials of SSRI treatment of depression. BMC Psychiatry 2014, 14: 245.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang D, Li Z, Li L, Hao W. Real-world, open-label study to evaluate the effectiveness of mirtazapine on sleep quality in outpatients with major depressive disorder. Asia Pac Psychiatry 2014, 6: 152–160.

    Article  PubMed  Google Scholar 

  61. Ma D, Zhang Z, Zhang X, Li L. Comparative efficacy, acceptability, and safety of medicinal, cognitive-behavioral therapy, and placebo treatments for acute major depressive disorder in children and adolescents: a multiple-treatments meta-analysis. Curr Med Res Opin 2014, 30: 971–995.

    Article  CAS  PubMed  Google Scholar 

  62. Guo T, Xiang YT, Xiao L, Hu CQ, Chiu HF, Ungvari GS, et al. Measurement-Based Care Versus Standard Care for Major Depression: A Randomized Controlled Trial With Blind Raters. Am J Psychiatry 2015, 172: 1004–1013.

    Article  PubMed  Google Scholar 

  63. Wang YX, Xiang YT, Su YA, Li Q, Shu L, Ng CH, et al. Antipsychotic Medications in Major Depression and the Association with Treatment Satisfaction and Quality of Life: Findings of Three National Surveys on Use of Psychotropics in China Between 2002 and 2012. Chin Med J (Engl) 2015, 128: 1847–1852.

    Article  Google Scholar 

  64. Fang Y, Yuan C, Xu Y, Chen J, Wu Z, Cao L, et al. A pilot study of the efficacy and safety of paroxetine augmented with risperidone, valproate, buspirone, trazodone, or thyroid hormone in adult Chinese patients with treatment-resistant major depression. J Clin Psychopharmacol 2011, 31: 638–642.

    CAS  PubMed  Google Scholar 

  65. Du J, Zhu M, Bao H, Li B, Dong Y, Xiao C, et al. The Role of Nutrients in Protecting Mitochondrial Function and Neurotransmitter Signaling: Implications for the Treatment of Depression, PTSD, and Suicidal Behaviors. Crit Rev Food Sci Nutr 2014. doi: 10.1080/10408398.2013.876960.

    PubMed  PubMed Central  Google Scholar 

  66. Li L, Ma X. The guideline of depression prevention and treatment in China, 2nd edition. Beijing: Chinese medical multimedia press 2015.

    Google Scholar 

  67. Li X, Xing B, Yu E, Chen W, Wu H. The combined treatment of venlafaxine and quetiapine for treatment-resistant depression: a clinical study. J Neuropsych Clin N 2013, 25(2): 157–160.

    Article  Google Scholar 

  68. Chang CM, Sato S, Han C. Evidence for the benefits of nonantipsychotic pharmacological augmentation in the treatment of depression. CNS Drugs 2013, 27 Suppl 1: S21–27.

    Article  PubMed  Google Scholar 

  69. Hou Y, Hu P, Zhang Y, Lu Q, Wang D, Yin L, et al. Cognitive behavioral therapy in combination with systemic family therapy improves mild to moderate postpartum depression. Rev Bras Psiquiatr 2014, 36: 47–52.

    Article  PubMed  Google Scholar 

  70. Huang TT, Liu CB, Tsai YH, Chin YF, Wong CH. Physical fitness exercise versus cognitive behavior therapy on reducing the depressive symptoms among community-dwelling elderly adults: A randomized controlled trial. Int J Nurs Stud 2015, 52: 1542–1552.

    Article  PubMed  Google Scholar 

  71. Zu S, Xiang YT, Liu J, Zhang L, Wang G, Ma X, et al. A comparison of cognitive-behavioral therapy, antidepressants, their combination and standard treatment for Chinese patients with moderate-severe major depressive disorders. J Affect Disord 2014, 152–154: 262–267.

    Article  PubMed  Google Scholar 

  72. Chen F, Lv X, Fang J, Yu S, Sui J, Fan L, et al. The effect of body-mind relaxation meditation induction on major depressive disorder: A resting-state fMRI study. J Affect Disord 2015, 183: 75–82.

    Article  PubMed  Google Scholar 

  73. Liu B, Zhang Y, Zhang L, Li L. Repetitive transcranial magnetic stimulation as an augmentative strategy for treatment-resistant depression, a meta-analysis of randomized, double-blind and sham-controlled study. BMC Psychiatry 2014, 14: 342.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Jin Y, Phillips B. A pilot study of the use of EEG-based synchronized Transcranial Magnetic Stimulation (sTMS) for treatment of Major Depression. BMC Psychiatry 2014, 14: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Xie J, Chen J, Wei Q. Repetitive transcranial magnetic stimulation versus electroconvulsive therapy for major depression: a meta-analysis of stimulus parameter effects. Neurol Res 2013, 35: 1084–1091.

    Article  PubMed  Google Scholar 

  76. Feng SF, Shi TY, Fan Y, Wang WN, Chen YC, Tan QR. Long-lasting effects of chronic rTMS to treat chronic rodent model of depression. Behav Brain Res 2012, 232: 245–251.

    Article  PubMed  Google Scholar 

  77. Du L, Qiu H, Liu H, Zhao W, Tang Y, Fu Y, et al. Changes in Problem-Solving Capacity and Association With Spontaneous Brain Activity After a Single Electroconvulsive Treatment in Major Depressive Disorder. J ECT 2016, 32: 49–54.

    Article  PubMed  Google Scholar 

  78. Song GM, Tian X, Shuai T, Yi LJ, Zeng Z, Liu S, et al. Treatment of Adults With Treatment-Resistant Depression: Electroconvulsive Therapy Plus Antidepressant or Electroconvulsive Therapy Alone? Evidence From an Indirect Comparison Meta-Analysis. Medicine (Baltimore) 2015, 94: e1052.

    Article  Google Scholar 

  79. Moritz S, Cludius B, Hottenrott B, Schneider BC, Saathoff K, Kuelz AK, et al. Mindfulness and relaxation treatment reduce depressive symptoms in individuals with psychosis. Eur Psychiatry 2015, 30: 709–714.

    Article  CAS  PubMed  Google Scholar 

  80. Wang T, Wang L, Tao W, Chen L. Acupuncture combined with an antidepressant for patients with depression in hospital: a pragmatic randomised controlled trial. Acupunct Med 2014, 32: 308–312.

    Article  PubMed  Google Scholar 

  81. Gong H, Ni C, Shen X, Wu T, Jiang C. Yoga for prenatal depression: a systematic review and meta-analysis. BMC Psychiatry 2015, 15: 14.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Qu M, Tang Q, Li X, Zhao R, Li J, Xu H, et al. Shen-Qi-Jie-Yu-Fang has antidepressant effects in a rodent model of postpartum depression by regulating the immune organs and subsets of T lymphocytes. Neuropsychiatr Dis Treat 2015, 11: 1523–1540.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ang W, Chen G, Xiong L, Chang Y, Pi W, Liu Y, et al. Synthesis and biological evaluation of novel naphthalene compounds as potential antidepressant agents. Eur J Med Chem 2014, 82: 263–273.

    Article  PubMed  Google Scholar 

  84. Fan L, Gong J, Fu W, Chen Z, Xu N, Liu J, et al. Gender-Related Differences in Outcomes on Acupuncture and Moxibustion Treatment Among Depression Patients. J Altern Complement Med 2015, 21: 673–680.

    Article  PubMed  Google Scholar 

  85. Yeung WF, Chung KF, Ng KY, Yu YM, Zhang SP, Ng BF, et al. Prescription of Chinese Herbal Medicine in Pattern-Based Traditional Chinese Medicine Treatment for Depression: A Systematic Review. Evid Based Complement Alternat Med 2015, 2015: 160189.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li G, Ruan L, Chen R, Wang R, Xie X, Zhang M, et al. Synergistic antidepressant-like effect of ferulic acid in combination with piperine: involvement of monoaminergic system. Metab Brain Dis 2015, 30: 1505–1514.

    Article  CAS  PubMed  Google Scholar 

  87. Zhai XJ, Chen F, Chen C, Zhu CR, Lu YN. LC-MS/MS based studies on the anti-depressant effect of hypericin in the chronic unpredictable mild stress rat model. J Ethnopharmacol 2015, 169: 363–369.

    Article  CAS  PubMed  Google Scholar 

  88. Wang X, Zeng C, Lin J, Chen T, Zhao T, Jia Z, et al. Metabonomics approach to assessing the modulatory effects of St John’s wort, ginsenosides, and clomipramine in experimental depression. J Proteome Res 2012, 11: 6223–6230.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang X, Kang D, Zhang L, Peng L. Shuganjieyu capsule for major depressive disorder (MDD) in adults: a systematic review. Aging Ment Health 2014, 18: 941–953.

    Article  PubMed  Google Scholar 

  90. Zhang ZQ, Yuan L, Yang M, Luo ZP, Zhao YM. The effect of Morinda officinalis How, a Chinese traditional medicinal plant, on the DRL 72-s schedule in rats and the forced swimming test in mice. Pharmacol Biochem Be 2002, 72(1–2): 39–43.

    Article  CAS  Google Scholar 

  91. Liu CC, Wu YF, Feng GM, Gao XX, Zhou YZ, Hou WJ, et al. Plasma-metabolite-biomarkers for the therapeutic response in depressed patients by the traditional Chinese medicine formula Xiaoyaosan: A (1)H NMR-based metabolomics approach. J Affect Disord 2015, 185: 156–163.

    Article  CAS  PubMed  Google Scholar 

  92. Fan HM, Sun XY, Guo W, Zhong AF, Niu W, Zhao L, et al. Differential expression of microRNA in peripheral blood mononuclear cells as specific biomarker for major depressive disorder patients. J Psychiatr Res 2014, 59: 45–52.

    Article  CAS  PubMed  Google Scholar 

  93. Li M, Metzger CD, Li W, Safron A, van Tol MJ, Lord A, et al. Dissociation of glutamate and cortical thickness is restricted to regions subserving trait but not state markers in major depressive disorder. J Affect Disord 2014, 169: 91–100.

    Article  CAS  PubMed  Google Scholar 

  94. Guo W, Liu F, Xue Z, Gao K, Liu Z, Xiao C, et al. Decreased interhemispheric coordination in treatment-resistant depression: a resting-state fMRI study. PLoS One 2013, 8: e71368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chi KF, Korgaonkar M, Grieve SM. Imaging predictors of remission to anti-depressant medications in major depressive disorder. J Affect Disord 2015, 186: 134–144.

    Article  PubMed  Google Scholar 

  96. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015, 372: 793–795.

    Article  CAS  PubMed  Google Scholar 

  97. Ledford H. Medical research: if depression were cancer. Nature 2014, 515: 182–184.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research from the corresponding author’s laboratory was supported by the National Natural Science Foundation of China (81371488 and 81571330).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggui Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Z., Jiang, W., Yin, Y. et al. The Current Situation on Major Depressive Disorder in China: Research on Mechanisms and Clinical Practice. Neurosci. Bull. 32, 389–397 (2016). https://doi.org/10.1007/s12264-016-0037-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-016-0037-6

Keywords

Navigation