Skip to main content
Log in

Correlat ion of thiamine metabolite levels with cognitive function in the non-demented elderly

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Thiamine metabolism is critical for glucose metabolism and also vital for brain function, which is susceptible to decline in the elderly. This study aimed to investigate whether thiamine metabolites correlate with cognitive function in the non-demented elderly and their impact factors. Volunteers >60 years old were recruited and their blood thiamine metabolites and Mini-Mental State Examination (MMSE) scores were measured. The apolipoprotein E (APOE) genotype, routine blood parameters, liver and kidney function, and levels of fasting blood glucose and triglycerides were also measured. The results showed that the thiamine diphosphate (TDP) level weakly correlated with MMSE score in the non-demented elderly. Participants with high TDP levels performed better in Recall and Attention and Calculation than those with low TDP. TDP levels were associated with the APOE ε2 allele, body mass index, hemoglobin level, fasting blood glucose, and triglycerides. Our results suggest that TDP, which is easily affected by many factors, impacts cognitive function in the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Castro IP, Martins LM, TufiR. Mitochondrial quality control and neurological disease: an emerging connection. Expert Rev Mol Med 2010, 12: e12.

    Article  Google Scholar 

  2. Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci 2006, 24: 1687–1694.

    Article  PubMed  Google Scholar 

  3. Davidson MB. The effect of aging on carbohydrate metabolism: a review of the English literature and a practical approach to the diagnosis of diabetes mellitus in the elderly. Metabolism 1979, 28: 688–705.

    Article  CAS  PubMed  Google Scholar 

  4. Sa-Roriz TM, Rosset I, Camozzato AL, Santos AC, Chaves ML, et al. (Pre)diabetes, brain aging, and cognition. Biochim Biophys Acta 2009, 1792: 432–443.

    Article  PubMed  Google Scholar 

  5. Mosconi L, Pupi A, de Cristofaro MT, Fayyaz M, Sorbi S, Herholz K. Functional interactions of the entorhinal cortex: an 18F-FDG PET study on normal aging and Alzheimer’s disease. J Nucl Med 2004, 45: 382–392.

    PubMed  Google Scholar 

  6. Mosconi L, Sorbi S, de Leon MJ, Li Y, Nacmias B, Myoung PS, et al. Hypometabolism exceeds atrophy in presymptomatic early-onset familial Alzheimer’s disease. J Nucl Med 2006, 47: 1778–1786.

    CAS  PubMed  Google Scholar 

  7. Brys M, Pirraglia E, Rich K, Rolstad S, Mosconi L, Switalski R, et al. Prediction and longitudinal study of CSF biomarkers in mild cognitive impairment. Neurobiol Aging 2009, 30: 682–690.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012, 367: 795–804.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Wilkinson TJ, Hanger HC, George PM, Sainsbury R. Is thiamine deficiency in elderly people related to age or comorbidity? Age Ageing 2000, 29: 111–116.

    Article  CAS  PubMed  Google Scholar 

  10. Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC, Harding B, et al. Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol 1988, 45: 836–840.

    Article  CAS  PubMed  Google Scholar 

  11. Mastrogiacoma F, Bettendorff L, Grisar T, Kish SJ. Brain thiamine, its phosphate esters, and its metabolizing enzymes in Alzheimer’s disease. Ann Neurol 1996, 39: 585–591.

    Article  CAS  PubMed  Google Scholar 

  12. Gold M, Hauser RA, Chen MF. Plasma thiamine deficiency associated with Alzheimer’s disease but not Parkinson’s disease. Metab Brain Dis 1998, 13: 43–53.

    Article  CAS  PubMed  Google Scholar 

  13. La Rue A, Koehler KM, Wayne SJ, Chiulli SJ, Haaland KY, Garry PJ. Nutritional status and cognitive functioning in a normally aging sample: a 6-y reassessment. Am J Clin Nutr 1997, 65: 20–29.

    PubMed  Google Scholar 

  14. McNeill G, Jia X, Whalley LJ, Fox HC, Corley J, Gow AJ, et al. Antioxidant and B vitamin intake in relation to cognitive function in later life in the Lothian Birth Cohort 1936. Eur J Clin Nutr 2011, 65: 619–626.

    Article  CAS  PubMed  Google Scholar 

  15. Ortega RM, Requejo AM, Andres P, Lopez-Sobaler AM, Quintas ME, Redondo MR, et al. Dietary intake and cognitive function in a group of elderly people. Am J Clin Nutr 1997, 66: 803–809.

    CAS  PubMed  Google Scholar 

  16. Lu J, Frank EL. Rapid HPLC measurement of thiamine and its phosphate esters in whole blood. Clin Chem 2008, 54: 901–906.

    Article  CAS  PubMed  Google Scholar 

  17. Korner RW, Vierzig A, Roth B, Muller C. Determination of thiamin diphosphate in whole blood samples by highperformance liquid chromatography—a method suitable for pediatric diagnostics. J Chromatogr B Analyt Technol Biomed Life Sci 2009, 877: 1882–1886.

    Article  PubMed  Google Scholar 

  18. Pan X, Gong N, Zhao J, Yu Z, Gu F, Chen J, et al. Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain 2010, 133: 1342–1351.

    Article  PubMed  Google Scholar 

  19. Mosconi L. Bra in glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 2005, 32: 486–510.

    Article  CAS  Google Scholar 

  20. Mosconi L, Pupi A, de Leon MJ. Brain glucose hypometabolism and oxidative stress in preclinical Alzheimer’s disease. Ann N Y Acad Sci 2008, 1147: 180–195.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Lo RY, Hubbard A E, Shaw LM, Trojanowski JQ, Petersen RC, Aisen PS, et al. Longitudinal change of biomarkers in cognitive decline. Arch Neurol 2011, 68: 1257–1266.

    Article  PubMed  Google Scholar 

  22. Gibson GE, Blass JP. Thiamine-dependent processes and treatment strategies in neurodegeneration. Antioxid Redox Signal 2007, 9: 1605–1619.

    Article  CAS  PubMed  Google Scholar 

  23. Lu’o’ng K, Nguyen LT. Role of thiamine in Alzheimer’s disease. Am J Alzheimers Dis Other Demen 2011, 26: 588–598.

    Article  PubMed  Google Scholar 

  24. Chen Z, Zhong C. De coding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 2013, 108: 21–43.

    Article  CAS  PubMed  Google Scholar 

  25. Sheu KF, Kim YT, Blass JP, Weksler ME. An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer’s disease brain. Ann Neurol 1985, 17: 444–449.

    Article  CAS  PubMed  Google Scholar 

  26. O’Rourke NP, Bunker V W, Thomas AJ, Finglas PM, Bailey AL, Clayton BE. Thiamine status of healthy and institutionalized elderly subjects: analysis of dietary intake and biochemical indices. Age Ageing 1990, 19: 325–329.

    Article  PubMed  Google Scholar 

  27. Pepersack T, Garbusinski J, Robberecht J, Beyer I, Willems D, Fuss M. Clinical relevance of thiamine status amongst hospitalized elderly patients. Gerontology 1999, 45: 96–101.

    Article  CAS  PubMed  Google Scholar 

  28. O’Keeffe ST, Tormey WP, Glasgow R, Lavan JN. Thiamine deficiency in hospitalized elderly patients. Gerontology 1994, 40: 18–24.

    Article  PubMed  Google Scholar 

  29. Requejo AM, Ortega RM, Robles F, Navia B, Faci M, Aparicio A. Influence of nutrition on cognitive function in a group of elderly, independently living people. Eur J Clin Nutr 2003, 57 Suppl 1: S54–57.

    Google Scholar 

  30. Baek MJ, Kim HJ, Ryu HJ, Lee SH, Han SH, Na HR, et al. The usefulness of the story recall test in patients with mild cognitive impairment and Alzheimer’s disease. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2011, 18: 214–229.

    Article  PubMed  Google Scholar 

  31. Sano M, Raman R, Emond J, Thomas RG, Petersen R, Schneider LS, et al. Adding delayed recall to the Alzheimer Disease Assessment Scale is useful in studies of mild cognitive impairment but not Alzheimer disease. Alzheimer Dis Assoc Disord 2011, 25: 122–127.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Gainotti G, Quaranta D, Vita MG, Marra C. Neuropsy-chological predictors of conversion from mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis 2014, 38: 481–495.

    CAS  PubMed  Google Scholar 

  33. Chen P, Ratcliff G, Belle SH, Cauley JA, De Kosky ST, Ganguli M. Cognitive tests that best discriminate between presymptomatic AD and those who remain nondemented. Neurology 2000, 55: 1847–1853.

    Article  CAS  PubMed  Google Scholar 

  34. Grober E, Lipton RB, Hall C, Crystal H. Memory impairment on free and cued selective reminding predicts dementia. Neurology 2000, 54: 827–832.

    Article  CAS  PubMed  Google Scholar 

  35. Dorey E, Chang N, Liu QY, Yang Z, Zhang W. Apolipoprotein E, amyloid-beta, and neuroinflammation in Alzheimer’s disease. Neurosci Bull 2014, 30: 317–330.

    Article  CAS  PubMed  Google Scholar 

  36. Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993, 261: 921–923.

    Article  CAS  PubMed  Google Scholar 

  37. Rebeck GW, Reiter JS, Strickland DK, Hyman BT. Apolipoprotein E in sporadic Alzheimer’s disease: allelic variation and receptor interactions. Neuron 1993, 11: 575–580.

    Article  CAS  PubMed  Google Scholar 

  38. Bu G. Apolipoprotein E and its receptors in Alzheimer’s disease: pathways, pathogenesis and therapy. Nat Rev Neurosci 2009, 10: 333–344.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Blacker D, Lee H, Muzikansky A, Ma rtin EC, Tanzi R, McArdle JJ, et al. Neuropsychological measures in normal individuals that predict subsequent cognitive decline. Arch Neurol 2007, 64: 862–871.

    Article  PubMed  Google Scholar 

  40. Martins CA, Oulhaj A, de Jager CA, Williams JH. APOE alleles predict the rate of cognitive decline in Alzheimer disease: a nonlinear model. Neurology 2005, 65: 1888–1893.

    Article  CAS  PubMed  Google Scholar 

  41. Blair CK, Folsom AR, Knopman DS, Bra y MS, Mosley TH, Boerwinkle E, et al. APOE genotype and cognitive decline in a middle-aged cohort. Neurology 2005, 64: 268–276.

    Article  CAS  PubMed  Google Scholar 

  42. Qizilbash N, Gregson J, Johnson ME, P earce N, Douglas I, Wing K, et al. BMI and risk of dementia in two million people over two decades: a retrospective cohort study. Lancet Diabetes Endocrinol 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjiu Zhong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Pan, X., Fei, G. et al. Correlat ion of thiamine metabolite levels with cognitive function in the non-demented elderly. Neurosci. Bull. 31, 676–684 (2015). https://doi.org/10.1007/s12264-015-1563-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-1563-3

Keywords

Navigation