Skip to main content
Log in

Salidroside Protects Against 6-Hydroxydopamine-Induced Cytotoxicity by Attenuating ER Stress

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a neurodegenerative disease characterized by a persistent decline of dopaminergic (DA) neurons in the substantia nigra pars compacta. Despite its frequency, effective therapeutic strategies that halt the neurodegenerative processes are lacking, reinforcing the need to better understand the molecular drivers of this disease. Importantly, increasing evidence suggests that the endoplasmic reticulum (ER) stress-induced unfolded protein response is likely involved in DA neuronal death. Salidroside, a major compound isolated from Rhodiola rosea L., possesses potent anti-oxidative stress properties and protects against DA neuronal death. However, the underlying mechanisms are not well understood. In the present study, we demonstrate that salidroside prevents 6-hydroxydopamine (6-OHDA)-induced cytotoxicity by attenuating ER stress. Furthermore, treatment of a DA neuronal cell line (SN4741) and primary cortical neurons with salidroside significantly reduced neurotoxin-induced increases in cytoplasmic reactive oxygen species and calcium, both of which cause ER stress, and cleaved caspase-12, which is responsible for ER stress-induced cell death. Together, these results suggest that salidroside protects SN4741 cells and primary cortical neurons from 6-OHDA-induced neurotoxicity by attenuating ER stress. This provides a rationale for the investigation of salidroside as a potential therapeutic agent in animal models of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mercado G, Valdes P, Hetz C. An ERcentric view of Parkinson’s disease. Trends Mol Med 2013, 19: 165–175.

    Article  CAS  PubMed  Google Scholar 

  2. Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 2014, 15: 233–249.

    Article  CAS  PubMed  Google Scholar 

  3. Placido AI, Pereira C, Duarte AI, Candeias E, Correia SC, Carvalho C, et al. Modulation of endoplasmic reticulum stress: an opportunity to prevent neurodegeneration? CNS Neurol Disord Drug Targets 2015, 29: 29.

    Google Scholar 

  4. Rojas-Rivera D, Armisen R, Colombo A, Martinez G, Eguiguren AL, Diaz A, et al. TMBIM3/GRINA is a novel unfolded protein response (UPR) target gene that controls apoptosis through the modulation of ER calcium homeostasis. FEBS J 2012, 279: 52–53.

    Article  Google Scholar 

  5. Srivastava R, Deng Y, Shah S, Rao AG, Howell SH. BINDING PROTEIN Is a Master Regulator of the Endoplasmic Reticulum Stress Sensor/Transducer bZIP28 in Arabidopsis. Plant Cell 2013, 25: 1416–1429.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Mockel A, Obringer C, Hakvoort TBM, Seeliger M, Lamers WH, Stoetzel C, et al. Pharmacological modulation of the retinal unfolded protein response in Bardet-Biedl Syndrome reduces apoptosis and preserves light detection ability. J Biol Chem 2012, 287: 37483–37494.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Kitamura M, Hiramatsu N. The oxidative stress: endoplasmic reticulum stress axis in cadmium toxicity. Biometals 2010, 23: 941–950.

    Article  CAS  PubMed  Google Scholar 

  8. Doyle KM, Kennedy D, Gorman AM, Gupta S, Healy SJM, Samali A. Unfolded proteins and endoplasmic reticulum stress in neurodegenerative disorders. J Cell Mol Med 2011, 15: 2025–2039.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Verkhratsky A, Parpura V. Store-operated calcium entry in neuroglia. Neurosci Bull 2014, 30: 125–133.

    Article  CAS  PubMed  Google Scholar 

  10. Holtz WA, O’Malley KL. Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 2003, 278: 19367-19377.

    Article  CAS  PubMed  Google Scholar 

  11. Chaudhari N, Talwar P, Parimisetty A, Lefebvre d’Hellencourt C, Ravanan P. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci 2014, 8: 213.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Li B, Xiao L, Wang ZY, Zheng PS. Knockdown of STIM1 inhibits 6-hydroxydopamine-induced oxidative stress through attenuating calcium-dependent ER stress and mitochondrial dysfunction in undifferentiated PC12 cells. Free Radic Res 2014, 48: 758–768.

    Article  PubMed  Google Scholar 

  13. Oh YM, Jang EH, Ko JH, Kang JH, Park CS, Han SB, et al. Inhibition of 6-hydroxydopamine-induced endoplasmic reticulum stress by L-carnosine in SH-SY5Y cells. Neurosci Lett 2009, 459: 7–10.

    Article  CAS  PubMed  Google Scholar 

  14. Guan S, Feng HH, Song BC, Guo WX, Xiong Y, Huang GR, et al. Salidroside attenuates LPS-induced pro-inflammatory cytokine responses and improves survival in murine endotoxemia. Int Immunopharmacol 2011, 11: 2194–2199.

    Article  CAS  PubMed  Google Scholar 

  15. Wang J, Li JZ, Lu AX, Zhang KF, Li BJ. Anticancer effect of salidroside on A549 lung cancer cells through inhibition of oxidative stress and phospho-p38 expression. Oncol Lett 2014, 7: 1159–1164.

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Li XF, Ye XL, Li XB, Sun X, Liang QA, Tao LZ, et al. Salidroside protects against MPP+-induced apoptosis in PC12 cells by inhibiting the NO pathway. Brain Res 2011, 1382: 9–18.

    Article  CAS  PubMed  Google Scholar 

  17. Wang SH, He H, Chen L, Zhang W, Zhang XJ, Chen JZ. Protective effects of salidroside in the MPTP/MPP+-induced model of Parkinson’s disease through ROS-NO-related mitochondrion pathway. Mol Neurobiol 2015, 51: 718–728.

    Article  CAS  PubMed  Google Scholar 

  18. Yang Q, She H, Gearing M, Colla E, Lee M, Shacka JJ, et al. Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science 2009, 323: 124–127.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Kojima A, Kitagawa H, Omatsu-Kanbe M, Matsuura H, Nosaka S. Presence of store-operated Ca-2 entry in C57BL/6J mouse ventricular myocytes and its suppression by sevoflurane. Br J Anaesth 2012, 109: 352–360.

    Article  CAS  PubMed  Google Scholar 

  20. Yan YG, Zhang J, Xu SJ, Luo JH, Qiu S, Wang W. Clustering of surface NMDA receptors is mainly mediated by the C-terminus of GluN2A in cultured rat hippocampal neurons. Neurosci Bull 2014, 30: 655–666.

    Article  CAS  PubMed  Google Scholar 

  21. Wang HP, Wang X, Ke ZJ, Comer AL, Xu M, Frank JA, et al. Tunicamycin-induced unfolded protein response in the developing mouse brain. Toxicol Appl Pharmacol 2015, 283: 157–167.

    Article  CAS  PubMed  Google Scholar 

  22. Pierre N, Barbe C, Gilson H, Deldicque L, Raymackers JM, Francaux M. Activation of ER stress by hydrogen peroxide in C2C12 myotubes. Biochem Biophys Res Commun 2014, 450: 459–463.

    Article  CAS  PubMed  Google Scholar 

  23. Toulouse A, Sullivan AM. Progress in Parkinson’s disease-where do we stand? Prog Neurobiol 2008, 85: 376–392.

    Article  PubMed  Google Scholar 

  24. Fukui M, Choi HJ, Zhu BT. Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death. Free Radic Biol Med 2010, 49: 800–813.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal 2014, 21: 396–413.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Qian EW, Ge DT, Kong SK. Salidroside promotes erythropoiesis and protects erythroblasts against oxidative stress by up-regulating glutathione peroxidase and thioredoxin. J Ethnopharmacol 2011, 133: 308–314.

    Article  CAS  PubMed  Google Scholar 

  27. Feldman DE, Chauhan V, Koong AC. The unfolded protein response: a novel component of the hypoxic stress response in tumors. Mol Cancer Res 2005, 3: 597–605.

    Article  CAS  PubMed  Google Scholar 

  28. Lindholm D, Wootz H, Korhonen L. ER stress and neurodegenerative diseases. Cell Death Differ 2006, 13: 385–392.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank American Journal Experts for critical modification of this manuscript. This work was supported by the National Basic Research Development Program (973 Program) of China (2011CB510000) and the National Natural Science Foundation of China (31371400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Yang.

Additional information

Kai Tao and Bao Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, K., Wang, B., Feng, D. et al. Salidroside Protects Against 6-Hydroxydopamine-Induced Cytotoxicity by Attenuating ER Stress. Neurosci. Bull. 32, 61–69 (2016). https://doi.org/10.1007/s12264-015-0001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-015-0001-x

Keywords

Navigation