Skip to main content
Log in

Morphological changes in gray matter volume correlate with catechol-O-methyl transferase gene Val158Met polymorphism in first-episode treatment-naïve patients with schizophrenia

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

The catechol-O-methyltransferase (COMT) gene is a schizophrenia susceptibility gene. A common functional polymorphism of this gene, Val158/158Met, has been proposed to influence gray matter volume (GMV). However, the effects of this polymorphism on cortical thickness/surface area in schizophrenic patients are less clear. In this study, we explored the relationship between the Val158Met polymorphism of the COMT gene and the GMV/cortical thickness/cortical surface area in 150 first-episode treatment-naïve patients with schizophrenia and 100 healthy controls. Main effects of diagnosis were found for GMV in the cerebellum and the visual, medial temporal, parietal, and middle frontal cortex. Patients with schizophrenia showed reduced GMVs in these regions. And main effects of genotype were detected for GMV in the left superior frontal gyrus. Moreover, a diagnosis × genotype interaction was found for the GMV of the left precuneus, and the effect of the COMT gene on GMV was due mainly to cortical thickness rather than cortical surface area. In addition, a pattern of increased GMV in the precuneus with increasing Met dose found in healthy controls was lost in patients with schizophrenia. These findings suggest that the COMTMet variant is associated with the disruption of dopaminergic influence on gray matter in schizophrenia, and the effect of the COMT gene on GMV in schizophrenia is mainly due to changes in cortical thickness rather than in cortical surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badner J, Gershon E. Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 2002, 7: 405–411.

    Article  CAS  PubMed  Google Scholar 

  2. Bassett AS, Chow EWC, Husted J, Weksberg R, Caluseriu O, Webb GD, et al. Clinical features of 78 adults with 22q11 deletion syndrome. Am J Med Genet A 2005, 138: 307–313.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J, et al. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci U S A 1995, 92: 7612–7616.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Murphy KC, Jones LA, Owen MJ. High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 1999, 56: 940.

    Article  CAS  PubMed  Google Scholar 

  5. Li T, Sham P, Vallada H, Xie T, Tang X, Murray R, et al. Preferential transmission of the high activity allele of COMT in schizophrenia. Psychiatr Genet 1996, 6: 131–134.

    Article  CAS  PubMed  Google Scholar 

  6. Li T, Ball D, Zhao J, Murray R, Liu X, Sham P, et al. Familybased linkage disequilibrium mapping using SNP marker haplotypes: application to a potential locus for schizophrenia at chromosome 22q11. Mol Psychiatry 2000, 5: 77–84.

    Article  CAS  PubMed  Google Scholar 

  7. Hirvonen J, van Erp T, Huttunen J, Aalto S, Någren K, Huttunen M, et al. Brain dopamine d1 receptors in twins discordant for schizophrenia. Am J Psychiatry 2006, 163: 1747–1753.

    PubMed  Google Scholar 

  8. Brans RGH, van Haren NEM, van Baal GCM, Schnack HG, Kahn RS, Pol HEH. Heritability of changes in brain volume over time in twin pairs discordant for schizophrenia. Arch Gen Psychiatry 2008, 65: 1259.

    Article  PubMed  Google Scholar 

  9. Bhide PG. Dopamine, cocaine and the development of cerebral cortical cytoarchitecture: a review of current concepts. Semin Cell Dev Biol 2009, 20: 395–402.

    Article  CAS  PubMed  Google Scholar 

  10. Greenstein D, Lerch J, Shaw P, Clasen L, Giedd J, Gochman P, et al. Childhood onset schizophrenia: cortical brain abnormalities as young adults. J Child Psychol Psychiatry 2006, 47: 1003–1012.

    Article  PubMed  Google Scholar 

  11. Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R, et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very earlyonset schizophrenia. Proc Natl Acad Sci U S A 2001, 98:11650.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lewis DA, Melchitzky DS, Sesack SR, Whitehead RE, Auh S, Sampson A. Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol 2001, 432: 119–136.

    Article  CAS  PubMed  Google Scholar 

  13. Tunbridge EM, Harrison PJ, Weinberger DR. Catechol-omethyltransferase, cognition, and psychosis: Val158Met and beyond. Biol Psychiatry 2006, 60: 141–151.

    Article  CAS  PubMed  Google Scholar 

  14. Scanlon PD, Raymond FA, Weinshilboum RM. Catechol-Omethyltransferase: thermolabile enzyme in erythrocytes of subjects homozygous for allele for low activity. Science 1979, 203: 63–65.

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, et al. Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 2004, 75: 807–821.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, Weinberger DR, et al. Genetic dissection of the role of catechol-O-methyltransferase in cognition and stress reactivity in mice. J Neurosci 2008, 28: 8709–8723.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Honea R, Verchinski BA, Pezawas L, Kolachana BS, Callicott JH, Mattay VS, et al. Impact of interacting functional variants in COMT on regional gray matter volume in human brain. Neuroimage 2009, 45: 44–51.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Prata DP, Mechelli A, Fu CH, Picchioni M, Kane F, Kalidindi S, et al. Opposite effects of catechol-O-methyltransferase Val158Met on cortical function in healthy subjects andpatients with schizophrenia. Biol Psychiatry 2009, 65: 473–480.

    Article  CAS  PubMed  Google Scholar 

  19. Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 2001, 98: 6917–6922.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Eisenberg DP, Sarpal D, Kohn PD, Meyer-Lindenberg A, Wint D, Kolachana B, et al. Catechol-o-methyltransferase valine(158)methionine genotype and resting regional cerebral blood flow in medication-free patients with schizophrenia. Biol Psychiatry 2010, 67: 287–290.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. First MB. User’s guide for the Structured clinical interview for DSM-IV axis I disorders SCID-I: clinician version. Amer Psychiatric Pub Inc, 1997.

    Google Scholar 

  22. Kay SR, Flszbein A, Opfer LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987, 13: 261.

    Article  CAS  PubMed  Google Scholar 

  23. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV-TR. American Psychiatric Publishing, Inc., 2000.

    Google Scholar 

  24. Ciulla TA, Sklar RM, Hauser SL. A simple method for DNA purification from peripheral blood. Anal Biochem 1988, 174: 485–488.

    Article  CAS  PubMed  Google Scholar 

  25. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A 2000, 97: 11050.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999, 9: 179–194.

    Article  CAS  PubMed  Google Scholar 

  27. Adler CM, DelBello MP, Jarvis K, Levine A, Adams J, Strakowski SM. Voxel-based study of structural changes in first-episode patients with bipolar disorder. Biol Psychiatry 2007, 61: 776–781.

    Article  PubMed  Google Scholar 

  28. Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage 2009, 48: 63–72.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Honea R, Crow TJ, Passingham D, Mackay CE. Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 2005, 162: 2233–2245.

    Article  PubMed  Google Scholar 

  30. Shenton ME, Dickey CC, Frumin M, McCarley RW. A review of MRI findings in schizophrenia. Schizophr Res 2001, 49: 1–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Mane A, Falcon C, Mateos JJ, Fernandez-Egea E, Horga G, Lomena F, et al. Progressive gray matter changes in first episode schizophrenia: a 4-year longitudinal magnetic resonance study using VBM. Schizophr Res 2009, 114: 136–143.

    Article  PubMed  Google Scholar 

  32. Sheng J, Zhu Y, Lu Z, Liu N, Huang N, Zhang Z, et al. Altered volume and lateralization of language-related regions in firstepisode schizophrenia. Schizophr Res 2013, 148: 168–174.

    Article  PubMed  Google Scholar 

  33. Chen Z, Deng W, Gong Q, Huang C, Jiang L, Li M, et al. Extensive brain structural network abnormality in first-episode treatment-naive patients with schizophrenia: morphometrical and covariation study. Psychol Med 2014, 44: 2489–2501.

    Article  CAS  PubMed  Google Scholar 

  34. Lui S, Deng W, Huang X, Jiang L, Ma X, Chen H, et al. Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study. Am J Psychiatry 2009, 166: 196–205.

    Article  PubMed  Google Scholar 

  35. Hu M, Li J, Eyler L, Guo X, Wei Q, Tang J, et al. Decreased left middle temporal gyrus volume in antipsychotic drugnaive, first-episode schizophrenia patients and their healthy unaffected siblings. Schizophr Res 2013, 144: 37–42.

    Article  PubMed  Google Scholar 

  36. Job DE, Whalley HC, McConnell S, Glabus M, Johnstone EC, Lawrie SM. Structural gray matter differences between first-episode schizophrenics and normal controls using voxelbased morphometry. Neuroimage 2002, 17: 880–889.

    Article  PubMed  Google Scholar 

  37. Borgwardt SJ, Picchioni MM, Ettinger U, Toulopoulou T, Murray R, McGuire PK. Regional gray matter volume in monozygotic twins concordant and discordant for schizophrenia. Biol Psychiatry 2010, 67: 956–964.

    Article  PubMed  Google Scholar 

  38. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex 2010, 46: 831–844.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Andreasen NC, Nopoulos P, O’Leary DS, Miller DD, Wassink T, Flaum M. Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanisms. Biol Psychiatry 1999, 46: 908–920.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Q, Xiang B, Deng W, Wu J, Li M, Ma X, et al. Genomewide association analysis with gray matter volume as a quantitative phenotype in first-episode treatment-naive patients with schizophrenia. PLoS One 2013, 8: e75083.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Bottmer C, Bachmann S, Pantel J, Essig M, Amann M, Schad LR, et al. Reduced cerebellar volume and neurological soft signs in first-episode schizophrenia. Psychiatry Res 2005, 140: 239–250.

    Article  PubMed  Google Scholar 

  42. Nopoulos PC, Ceilley JW, Gailis EA, Andreasen NC. An MRI study of cerebellar vermis morphology in patients with schizophrenia: evidence in support of the cognitive dysmetria concept. Biol Psychiatry 1999, 46: 703–711.

    Article  CAS  PubMed  Google Scholar 

  43. Okugawa G, Nobuhara K, Takase K, Kinoshita T. Cerebellar posterior superior vermis and cognitive cluster scores in drug-naive patients with first-episode schizophrenia. Neuropsychobiology 2008, 56: 216–219.

    Article  Google Scholar 

  44. Raznahan A, Greenstein D, Lee Y, Long R, Clasen L, Gochman P, et al. Catechol-o-methyl transferase (COMT) val〈sup>158</sup> met polymorphism and adolescent cortical development in patients with childhood-onset schizophrenia, their non-psychotic siblings, and healthy controls. Neuroimage 2011, 57: 1517–1523.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Rakic P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci 1995, 18: 383–388.

    Article  CAS  PubMed  Google Scholar 

  46. Giedd JN. Structural magnetic resonance imaging of the adolescent brain. Ann N Y Acad Sci 2004, 1021: 77–85.

    Article  PubMed  Google Scholar 

  47. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, et al. Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 2008, 28: 3586–3594.

    Article  CAS  PubMed  Google Scholar 

  48. Narr KL, Bilder RM, Toga AW, Woods RP, Rex DE, Szeszko PR, et al. Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb Cortex 2005, 15: 708–719.

    Article  PubMed  Google Scholar 

  49. Thormodsen R, Rimol LM, Tamnes CK, Juuhl-Langseth M, Holmen A, Emblem KE, et al. Age-related cortical thickness differences in adolescents with early-onset schizophrenia compared with healthy adolescents. Psychiatry Res 2013, 214: 190–196.

    Article  PubMed  Google Scholar 

  50. Voets NL, Hough MG, Douaud G, Matthews PM, James A, Winmill L, et al. Evidence for abnormalities of cortical development in adolescent-onset schizophrenia. Neuroimage 2008, 43: 665–675.

    Article  PubMed  Google Scholar 

  51. Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neale M, et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 2009, 19: 2728–2735.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Jiao Y, Chen R, Ke XY, Chu KK, Lu ZH, Herskovits EH. Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage 2010, 50: 589–599.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Hyde KL, Samson F, Evans AC, Mottron L. Neuroanatomical differences in brain areas implicated in perceptual and other core features of autism revealed by cortical thickness analysis and voxel-based morphometry. Hum Brain Mapp 2010, 31: 556–566.

    PubMed  Google Scholar 

  54. Palaniyappan L, Liddle PF. Differential effects of surface area, gyrification and cortical thickness on voxel based morphometric deficits in schizophrenia. Neuroimage 2012, 60: 693–699.

    Article  PubMed  Google Scholar 

  55. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 2006, 129: 564–583.

    Article  PubMed  Google Scholar 

  56. Whittaker JF, Deakin JF, Tomenson B. Face processing in schizophrenia: defining the deficit. Psychol Med 2001, 31: 499–507.

    Article  CAS  PubMed  Google Scholar 

  57. Lakis N, Jimenez JA, Mancini-Marie A, Stip E, Lavoie ME, Mendrek A. Neural correlates of emotional recognition memory in schizophrenia: effects of valence and arousal. Psychiatry Res 2011, 194: 245–256.

    Article  PubMed  Google Scholar 

  58. Lepage M, Pelletier M, Achim A, Montoya A, Menear M, Lal S. Parietal cortex and episodic memory retrieval in schizophrenia. Psychiatry Res 2010, 182: 191–199.

    Article  PubMed  Google Scholar 

  59. Ranganath C, Minzenberg MJ, Ragland JD. The cognitive neuroscience of memory function and dysfunction in schizophrenia. Biol Psychiatry 2008, 64: 18–25.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Danion JM, Huron C, Vidailhet P, Berna F. Functional mechanisms of episodic memory impairment in schizophrenia. Can J Psychiatry 2007, 52: 693–701.

    PubMed  Google Scholar 

  61. Brent BK, Seidman LJ, Thermenos HW, Holt DJ, Keshavan MS. Self-disturbances as a possible premorbid indicator of schizophrenia risk: a neurodevelopmental perspective. Schizophr Res 2014, 152: 73–80.

    Article  PubMed  Google Scholar 

  62. Guo S, Kendrick KM, Yu R, Wang HL, Feng J. Key functional circuitry altered in schizophrenia involves parietal regions associated with sense of self. Hum Brain Mapp 2014, 35: 123–139.

    Article  PubMed  Google Scholar 

  63. Vercammen A, Knegtering H, den Boer JA, Liemburg EJ, Aleman A. Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biol Psychiatry 2010, 67: 912–918.

    Article  PubMed  Google Scholar 

  64. Fransson P, Marrelec G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage 2008, 42: 1178–1184.

    Article  PubMed  Google Scholar 

  65. Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, et al. Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 2009, 106: 1279–1284.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Holt DJ, Cassidy BS, Andrews-Hanna JR, Lee SM, Coombs G, Goff DC, et al. An anterior-to-posterior shift in midline cortical activity in schizophrenia during self-reflection. Biol Psychiatry 2011, 69: 415–423.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Broyd SJ, Demanuele C, Debener S, Helps SK, James CJ, Sonuga-Barke EJ. Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 2009, 33: 279–296.

    Article  PubMed  Google Scholar 

  68. Narr KL, Toga AW, Szeszko P, Thompson PM, Woods RP, Robinson D, et al. Cortical thinning in cingulate and occipital cortices in first episode schizophrenia. Biol Psychiatry 2005, 58: 32–40.

    Article  PubMed  Google Scholar 

  69. Schultz CC, Koch K, Wagner G, Roebel M, Nenadic I, Schachtzabel C, et al. Complex pattern of cortical thinning in schizophrenia: results from an automated surface based analysis of cortical thickness. Psychiatry Res 2010, 182: 134–140.

    Article  PubMed  Google Scholar 

  70. Rimol LM, Nesvåg R, Hagler Jr DJ, Bergmann Ø, Fennema-Notestine C, Hartberg CB, et al. Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biol Psychiatry 2012, 71: 552–560.

    Article  PubMed  Google Scholar 

  71. McIntosh AM, Baig BJ, Hall J, Job D, Whalley HC, Lymer GKS, et al. Relationship of catechol-O-methyltransferase variants to brain structure and function in a population at high risk of psychosis. Biol Psychiatry 2007, 61: 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  72. Mechelli A, Tognin S, McGuire PK, Prata D, Sartori G, Fusar-Poli P, et al. Genetic vulnerability to affective psychopathology in childhood: a combined voxel-based morphometry and functional magnetic resonance imaging study. Biol Psychiatry 2009, 66: 231–237.

    Article  PubMed  Google Scholar 

  73. Taylor WD, Züchner S, Payne ME, Messer DF, Doty TJ, MacFall JR, et al. The COMT Val158Met polymorphism and temporal lobe morphometry in healthy adults. Psychiatry Res 2007, 155: 173–177.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Cerasa A, Gioia MC, Labate A, Liguori M, Lanza P, Quattrone A. Impact of catechol-O-methyltransferase Val108/158 Met genotype on hippocampal and prefrontal gray matter volume. Neuroreport 2008, 19: 405–408.

    Article  CAS  PubMed  Google Scholar 

  75. Küppers E, Beyer C. Dopamine regulates brain-derived neurotrophic factor (BDNF) expression in cultured embryonic mouse striatal cells. Neuroreport 2001, 12: 1175–1179.

    Article  PubMed  Google Scholar 

  76. Raznahan A, Greenstein D, Lee Y, Long R, Clasen L, Gochman P, et al. Catechol-o-methyl transferase (COMT) val158met polymorphism and adolescent cortical development in patients with childhood-onset schizophrenia, their non-psychotic siblings, and healthy controls. Neuroimage 2011, 57: 1517–1523.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Meyer-Lindenberg A, Nichols T, Callicott JH, Ding J, Kolachana B, Buckholtz J, et al. Impact of complex genetic variation in COMT on human brain function. Mol Psychiatry 2006, 11: 867–877.

    Article  CAS  PubMed  Google Scholar 

  78. Fazio L, Blasi G, Taurisano P, Papazacharias A, Romano R, Gelao B, et al. D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans. Neuroimage 2011, 54: 2915–2921.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Deng or Tao Li.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, ML., Xiang, B., Li, YF. et al. Morphological changes in gray matter volume correlate with catechol-O-methyl transferase gene Val158Met polymorphism in first-episode treatment-naïve patients with schizophrenia. Neurosci. Bull. 31, 31–42 (2015). https://doi.org/10.1007/s12264-014-1491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-014-1491-7

Keywords

Navigation