Skip to main content
Log in

Production of Tagatose by Whole-cell Bioconversion from Fructose Using Corynebacterium glutamicum

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstracts

Tagatose is a rarely occurring sugar found in food and sweet fruits. It is a potential sweetener with low calories but a sweetness similar to that of sucrose. In this study, we developed a whole-cell biocatalyst using Corynebacterium glutamicum for direct bioconversion of fructose to tagatose. First, we constructed a biological conversion pathway for the conversion of fructose to tagatose by expressing tagatose 4-epimerase (TN) from Thermotoga neapolitana in C. glutamicum. Next, to increase the expression level of the enzyme, we engineered copy number of plasmid. Plasmid library was constructed by randomizing the cgrI antisense RNA region in the plasmid, and the plasmid with high-copy number was isolated using fluorescence-activated single cell sorting (FACS)-based high-throughput screening. The isolated plasmid, pHCP7, had 2-fold higher copy numbers than the original plasmid. A higher expression level and conversion yield could be achieved using pHCP7. Finally, we examined a novel tagatose 4-epimerase TN(KNF4E) isolated from Kosmotoga olearia. The gene expression level was further increased (33.9% of total fraction) through codon optimization and expression in pHCP7, and a conversion yield as high as 21.7% was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oh, D. K. (2007) Tagatose: properties, applications, and biotechnological processes. Appl. Microbiol. Biotechnol. 76: 1–8.

    Article  CAS  PubMed  Google Scholar 

  2. Levin, G. V. (2002) Tagatose, the new GRAS sweetener and health product. J. Med. Food 5: 23–36.

    Article  CAS  PubMed  Google Scholar 

  3. Roy, S., J. Chikkerur, S. C. Roy, A. Dhali, A. P. Kolte, M. Sridhar, and A. K. Samanta (2018) Tagatose as a potential nutraceutical: production, properties, biological roles, and applications. J. Food Sci. 83: 2699–2709.

    Article  CAS  PubMed  Google Scholar 

  4. Lu, Y., G. V. Levin, and T. W. Donner (2008) Tagatose, a new antidiabetic and obesity control drug. Diabetes Obes. Metab. 10: 109–134.

    CAS  PubMed  Google Scholar 

  5. Espinosa, I. and L. Fogelfeld (2010) Tagatose: from a sweetener to a new diabetic medication? Expert Opin. Investig. Drugs 19: 285–294.

    Article  CAS  PubMed  Google Scholar 

  6. Beadle, J. R., J. P. Saunders, and T. J. Wajda Jr. (1992) Process for manufacturing tagatose. US Patent 5,078,796.

  7. Jayamuthunagai, J., G. Srisowmeya, M. Chakravarthy, and P. Gautam (2017) d-Tagatose production by permeabilized and immobilized Lactobacillus plantarum using whey permeate. Bioresour. Technol. 235: 250–255.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, G., H. M. Zabed, J. Yun, J. Yuan, Y. Zhang, Y. Wang, and X. Qi (2020) Two-stage biosynthesis of D-tagatose from milk whey powder by an engineered Escherichia coli strain expressing L-arabinose isomerase from Lactobacillus plantarum. Bioresour. Technol. 305: 123010.

    Article  CAS  PubMed  Google Scholar 

  9. Henao-Velásquez, A. F., O. D. Múnera-Bedoya, A. C. Herrera, J. H. Agudelo-Trujillo, and M. F. Cerón-Muñoz (2014) Lactose and milk urea nitrogen: fluctuations during lactation in Holstein cows. Rev. Bras. Zootec. 43: 479–484.

    Article  Google Scholar 

  10. Qi, X. and R. F. Tester (2019) Fructose, galactose and glucose — in health and disease. Clin. Nutr. ESPEN 33: 18–28.

    Article  PubMed  Google Scholar 

  11. Lee, S. H., S. H. Hong, K. R. Kim, and D. K. Oh (2017) High-yield production of pure tagatose from fructose by a three-step enzymatic cascade reaction. Biotechnol. Lett. 39: 1141–1148.

    Article  CAS  PubMed  Google Scholar 

  12. Shin, K.-C., T.-E. Lee, M.-J. Seo, D. W. Kim, L.-W. Kang, and D.-K. Oh (2020) Development of tagaturonate 3-epimerase into tagatose 4-epimerase with a biocatalytic route from fructose to tagatose. ACS Catal. 10: 12212–12222.

    Article  CAS  Google Scholar 

  13. Wachtmeister, J. and D. Rother (2016) Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Curr. Opin. Biotechnol. 42: 169–177.

    Article  CAS  PubMed  Google Scholar 

  14. Lin, B. and Y. Tao (2017) Whole-cell biocatalysts by design. Microb. Cell Fact. 16: 106.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhao, H. and W. A. van der Donk (2003) Regeneration of cofactors for use in biocatalysis. Curr. Opin. Biotechnol. 14: 583–589.

    Article  CAS  PubMed  Google Scholar 

  16. Baritugo, K.-A., J. Son, Y. J. Sohn, H. T. Kim, J. C. Joo, J. Choi, and S. J. Park (2021) Recent progress in metabolic engineering of Corynebacterium glutamicum for the production of C4, C5, and C6 chemicals. Korean J. Chem. Eng. 38: 1291–1307.

    Article  CAS  Google Scholar 

  17. Wolf, S., J. Becker, Y. Tsuge, H. Kawaguchi, A. Kondo, J. Marienhagen, M. Bott, V. F. Wendisch, and C. Wittmann (2021) Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem. 65: 197–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jeong, S.-H., M. Kwon, and S.-W. Kim (2022) Advanced whole-cell conversion for D-allulose production using an engineered Corynebacterium glutamicum. Biotechnol. Bioprocess Eng. 27: 276–285.

    Article  CAS  Google Scholar 

  19. Kallscheuer, N., M. Vogt, A. Stenzel, J. Gätgens, M. Bott, and J. Marienhagen (2016) Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab. Eng. 38: 47–55.

    Article  CAS  PubMed  Google Scholar 

  20. Grigoriou, S., P. Kugler, E. Kulcinskaja, F. Walter, J. King, P. Hill, V. F. Wendisch, and E. O’Reilly (2020) Development of a Corynebacterium glutamicum bio-factory for self-sufficient transaminase reactions. Green Chem. 22: 4128–4132.

    Article  CAS  Google Scholar 

  21. Son, J., I. H. Choi, C. G. Lim, J. H. Jang, H. B. Bang, J. W. Cha, E. J. Jeon, M. G. Sohn, H. J. Yun, S. C. Kim, and K. J. Jeong (2022) Production of cinnamaldehyde through whole-cell bioconversion from trans-cinnamic acid using engineered Corynebacterium glutamicum. J. Agric. Food Chem. 70: 2656–2663.

    Article  CAS  PubMed  Google Scholar 

  22. Son, J., J. H. Jang, I. H. Choi, C. G. Lim, E. J. Jeon, H. B. Bang, and K. J. Jeong (2021) Production of trans-cinnamic acid by whole-cell bioconversion from L-phenylalanine in engineered Corynebacterium glutamicum. Microb. Cell Fact. 20: 145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang, S. J., Y. H. Kim, S. B. Kim, S. W. Park, I. H. Park, M. H. Kim, and Y. M. Lee (2020) Production method for tagatose. US Patent 10,745,720.

  24. Yang, S. J., Y. M. Lee, I. H. Park, H. K. Cho, S. B. Kim, C. H. Lee, and E. J. Choi (2021) Composition for producing tagatose and method of producing tagatose using the same. US Patent 11,180,785.

  25. Yim, S. S., J. W. Choi, R. J. Lee, Y. J. Lee, S. H. Lee, S. Y. Kim, and K. J. Jeong (2016) Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnol. Bioeng. 113: 163–172.

    Article  CAS  PubMed  Google Scholar 

  26. Yim, S. S., S. J. An, M. Kang, J. Lee, and K. J. Jeong (2013) Isolation of fully synthetic promoters for high-level gene expression in Corynebacterium glutamicum. Biotechnol. Bioeng. 110: 2959–2969.

    Article  CAS  PubMed  Google Scholar 

  27. Lee, C., J. Kim, S. G. Shin, and S. Hwang (2006) Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 123: 273–280.

    Article  CAS  PubMed  Google Scholar 

  28. Skulj, M., V. Okrslar, S. Jalen, S. Jevsevar, P. Slanc, B. Strukelj, and V. Menart (2008) Improved determination of plasmid copy number using quantitative real-time PCR for monitoring fermentation processes. Microb. Cell Fact. 7: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gruber, A. R., R. Lorenz, S. H. Bernhart, R. Neuböck, and I. L. Hofacker (2008) The Vienna RNA websuite. Nucleic Acids Res. 36(Web Server issue): W70–W74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kerpedjiev, P., S. Hammer, and I. L. Hofacker (2015) Forna (force-directed RNA): simple and effective online RNA secondary structure diagrams. Bioinformatics 31: 3377–3379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeong, Y. J., J. W. Choi, M. S. Cho, and K. J. Jeong (2019) Isolation of novel exo-type β-agarase from Gilvimarinus chinensis and high-level secretory production in Corynebacterium glutamicum. Biotechnol. Bioprocess Eng. 24: 250–257.

    Article  CAS  Google Scholar 

  32. Choi, J. W., S. S. Yim, and K. J. Jeong (2018) Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 102: 873–883.

    Article  CAS  PubMed  Google Scholar 

  33. Ceroni, F., R. Algar, G. B. Stan, and T. Ellis (2015) Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods 12: 415–418.

    Article  CAS  PubMed  Google Scholar 

  34. Bentley, W. E., N. Mirjalili, D. C. Andersen, R. H. Davis, and D. S. Kompala (1990) Plasmid-encoded protein: the principal factor in the “metabolic burden” associated with recombinant bacteria. Biotechnol. Bioeng. 35: 668–681.

    Article  CAS  PubMed  Google Scholar 

  35. Martinez, A., S. W. York, L. P. Yomano, V. L. Pineda, F. C. Davis, J. C. Shelton, and L. O. Ingram (1999) Biosynthetic burden and plasmid burden limit expression of chromosomally integrated heterologous genes (pdc, adhB) in Escherichia coli. Biotechnol. Prog. 15: 891–897.

    Article  CAS  PubMed  Google Scholar 

  36. He, L., F. Söderbom, E. G. H. Wagner, U. Binnie, N. Binns, and M. Masters (1993) PcnB is required for the rapid degradation of RNAI, the antisense RNA that controls the copy number of ColE1-related plasmids. Mol. Microbiol. 9: 1131–1142.

    Article  CAS  PubMed  Google Scholar 

  37. Okibe, N., N. Suzuki, M. Inui, and H. Yukawa (2010) Antisense-RNA-mediated plasmid copy number control in pCG1-family plasmids, pCGR2 and pCG1, in Corynebacterium glutamicum. Microbiology (Reading) 156: 3609–3623.

    Article  CAS  PubMed  Google Scholar 

  38. Venkova-Canova, T., M. Pátek, and J. Nesvera (2003) Control of rep gene expression in plasmid pGA1 from Corynebacterium glutamicum. J. Bacteriol. 185: 2402–2409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee, Y. M., E.-S. Park, I. H. Park, S. M. Shin, S. J. Yang, R. Y. Yoon, E. J. Choi, S. B. Kim, and S. W. Park (2021) Novel fructose-4-epimerase and tagatose production method using same. US Patent 20,210,363,532.

Download references

Acknowledgements

This work was supported by research grants from CJ CheilJedang Institute of Biotechnology, and by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT) [No. NRF-2020R1A2C2012537], Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

EJJ designed the study, performed the experiments, analyzed the data and drafted the manuscript. EJC, YML, SBK participated in the execution of the experiments and data interpretation. KJJ initiated and supervised the study, and revised manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ki Jun Jeong.

Ethics declarations

EJJ, SBK, and KJJ declare no direct and indirect conflict of interest that relate to this manuscript. YMJ and EJC are full-time employees of CJ Cheiljedang, however the funding sponsors had no role in the performance of the experiments and in the collection, analysis and interpretation of the data. Neither ethical approval required nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, E.J., Lee, YM., Choi, E.J. et al. Production of Tagatose by Whole-cell Bioconversion from Fructose Using Corynebacterium glutamicum. Biotechnol Bioproc E 28, 419–427 (2023). https://doi.org/10.1007/s12257-022-0304-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0304-5

Keywords

Navigation