Skip to main content
Log in

d-Allulose Production from d-fructose by Putative Dolichol Phosphate Mannose Synthase from Bacillus sp. with Potential d-allulose 3-epimrase Activity

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We found a putative dolichol phosphate mannose synthases (DPMS) from Bacillus sp., which exhibited the highest specific activity toward d-allulose, one of a functional rare sugars and also known as d-psicose, and identified it as d-allulose 3-epimerase (Basp_DAEase). The gene of Basp_DAEase from Bacillus sp. was cloned to the expression vector (pET-28a(+)) and then expressed as a recombinant enzyme in the Escherichia coli BL21(DE3). The recombinant enzyme was purified homogeneously on the SDS-PAGE with 34 kDa by 6XHis-tagging affinity chromatography and it was found to exist in dimer form as its activity form by Sephacryl S 200 HR 16/60 gelfiltration chromatography. The reaction conditions for a recombinant Basp_DAEase were optimized to produce d-allulose from d-fructose. The epimerization activity of Basp_DAEase toward d-fructose was maximum at pH 7.5 and 40°C with 1 mM Co2+. The half-lives of Basp_DAEase at 35°C, 40°C, 45°C, 50°C, and 55°C were 45.8, 4.18, 1.24, 0.46, and 0.17 h, respectively. At pH 7.5, 40°C, and 1mM Co2+, 215 g/L of d-allulose was produced from 700 g/L of d-fructose by 20 U/mL of Basp_DAEase after 50 min of enzyme reaction with a conversion yield of 31% and productivity of 258 g/L/h. This is the highest productivity of d-allulose from d-fructose reported to date. From this result, it is strongly suggested that Basp_DAEase has high potential application value in the industrial d-allulose production from d-fructose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, S., W. Xiao, X. Zhu, P. Yang, Z. Zheng, S. Lu, S. Jiang, G. Zhang, and J. Liu (2020) Review on d-allulose: in vivo metabolism, catalytic mechanism, engineering strain construction, bio-production technology. Front. Bioeng. Biotechnol. 8: 26.

    Article  Google Scholar 

  2. Matsuo, T. and K. Izumori (2009) d-psicose inhibits intestinal alpha-glucosidase and suppresses the glycemic response after ingestion of carbohydrates in rats. J. Clin. Biochem. Nutr. 45: 202–206.

    Article  CAS  Google Scholar 

  3. Hossain, M. A., S. Kitagaki, D. Nakano, A. Nishiyama, Y. Funamoto, T. Matsunaga, I. Tsukamoto, F. Yamaguchi, K. Kamitori, Y. Dong, Y. Hirata, K. Murao, Y. Toyoda, and M. Tokuda (2011) Rare sugar d-psicose improves insulin sensitivity and glucose tolerance in type 2 diabetes Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biochem. Biophys. Res. Commun. 405: 7–12.

    Article  CAS  Google Scholar 

  4. Iida, T., T. Yamada, N. Hayashi, K. Okuma, K. Izumori, R. Ishii, and T. Matsuo (2013) Reduction of abdominal fat accumulation in rats by 8-week ingestion of a newly developed sweetener made from high fructose corn syrup. Food Chem. 138: 781–785.

    Article  CAS  Google Scholar 

  5. Zhang, W., T. Zhang, B. Jiang, and W. Mu (2017) Enzymatic approaches to rare sugar production. Biotechnol. Adv. 35: 267–274.

    Article  Google Scholar 

  6. He, W., B. Jiang, W. Mu, and T. Zhang (2016) Production of d-allulose with d-psicose 3-epimerase expressed and displayed on the surface of Bacillus subtilis spores. J. Agric. Food Chem. 64: 7201–7207.

    Article  CAS  Google Scholar 

  7. Park, C. S., T. Kim, S. H. Hong, K. C. Shin, K. R. Kim, and D. K. Oh (2016) d-allulose production from d-fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing D-allulose 3-epimerase Flavonifractor plautii. PLoS One. 11: e0160044.

    Article  Google Scholar 

  8. Zhang, J., C. Xu, X. Chen, X. Ruan, Y. Zhang, H. Xu, Y. Guo, J. Xu, P. Lv, and Z. Wang (2020) Engineered Bacillus subtilis harbouring gene of d-tagatose 3-epimerase for the bioconversion of d-fructose into d-psicose through fermentation. Enzyme Microb. Technol. 136: 109531.

    Article  CAS  Google Scholar 

  9. Itoh, H., H. Okaya, A. R. Khan, S. Tajima, S. Hayakawa, and K. Izumori (1994) Purification and characterization of d-tagatose 3-epimerase from Pseudomonas sp. ST-24. Biosci. Biotechnol. Biochem. 58: 2168–2171.

    Article  CAS  Google Scholar 

  10. Yoshida, H., M. Yamada, T. Nishitani, G. Takada, K. Izumori, and S. Kamitori (2007) Crystal structures of d-tagatose 3-epimerase from Pseudomonas cichorii and its complexes with d-tagatose and d-fructose. J. Mol. Biol. 374: 443–453.

    Article  CAS  Google Scholar 

  11. Zhang, L., W. Mu, B. Jiang, and T. Zhang (2009) Characterization of d-tagatose-3-epimerase from Rhodobacter sphaeroides that converts d-fructose into d-psicose. Biotechnol. Lett. 31: 857–862.

    Article  CAS  Google Scholar 

  12. Li, S., Z. Chen, W. Zhang, C. Guang, and W. Mu (2019) Characterization of a d-tagatose 3-epimerase from Caballeronia fortuita and its application in rare sugar production. Int. J. Biol. Macromol. 138: 536–545.

    Article  CAS  Google Scholar 

  13. Zhu, Z., C. Li, X. Liu, D. Gao, X. Wang, M. Tanokura, H. M. Qin, and F. Lu (2019) Biochemical characterization and biocatalytic application of a novel d-tagatose 3-epimerase from Sinorhizobium sp. RSC Adv. 9: 2919–2927.

    Article  CAS  Google Scholar 

  14. Kim, H. J., E. K. Hyun, Y. S. Kim, Y. J. Lee, and D. K. Oh (2006) Characterization of an Agrobacterium tumefaciensd-psicose 3-epimerase that converts d-fructose to d-psicose. Appl. Environ. Microbiol. 72: 981–985.

    Article  CAS  Google Scholar 

  15. Mu, W., F. Chu, Q. Xing, S. Yu, L. Zhou, and B. Jiang (2011) Cloning, expression, and characterization of a d-psicose 3-epimerase from Clostridium cellulolyticum H10. J. Agric. Food Chem. 59: 7785–7792.

    Article  CAS  Google Scholar 

  16. Zhu, Y., Y. Men, W. Bai, X. Li, L. Zhang, Y. Sun, and Y. Ma (2012) Overexpression of d-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in d-psicose production. Biotechnol. Lett. 34: 1901–1906.

    Article  Google Scholar 

  17. Zhang, W., D. Fang, Q. Xing, L. Zhou, B. Jiang, and W. Mu (2013) Characterization of a novel metal-dependent d-psicose 3-epimerase from Clostridium scindens 35704. PLoS One. 8: e62987.

    Article  CAS  Google Scholar 

  18. Mu, W., W. Zhang, D. Fang, L. Zhou, B. Jiang, and T. Zhang (2013) Characterization of a d-psicose-producing enzyme, d-psicose 3-epimerase, from Clostridium sp. Biotechnol. Lett. 35: 1481–1486.

    Article  CAS  Google Scholar 

  19. Zhang, W., D. Fang, T. Zhang, L. Zhou, B. Jiang, and W. Mu (2013) Characterization of a metal-dependent d-psicose 3-epimerase from a novel strain, Desmospora sp. 8437. J. Agric. Food Chem. 61: 11468–11476.

    Article  CAS  Google Scholar 

  20. Jia, M., W. Mu, F. Chu, X. Zhang, B. Jiang, L. L. Zhou, and T. Zhang (2014) A d-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for d-psicose production: cloning, expression, purification, and characterization. Appl. Microbiol. Biotechnol. 98: 717–725.

    Article  CAS  Google Scholar 

  21. Zhang, W., H. Li, T. Zhang, B. Jiang, L. Zhou, and W. Mu (2015) Characterization of a d-psicose 3-epimerase from Dorea sp. CAG317 with an acidic pH optimum and a high specific activity. J. Mol. Catal. B Enzym. 120: 68–74.

    Article  CAS  Google Scholar 

  22. Zhang, W., T. Zhang, B. Jiang, and W. Mu (2016) Biochemical characterization of a d-psicose 3-epimerase from Treponema primitia ZAS-1 and its application on enzymatic production of d-psicose. J. Sci. Food Agric. 96: 49–56.

    Article  CAS  Google Scholar 

  23. Yoshihara, A., T. Kozakai, T. Shintani, R. Matsutani, K. Ohtani, T. Iida, K. Akimitsu, K. Izumori, and P. K. Gullapalli (2017) Purification and characterization of d-allulose 3-epimerase derived from Arthrobacter globiformis M30, a GRAS microorganism. J. Biosci. Bioeng. 123: 170–176.

    Article  CAS  Google Scholar 

  24. Tseng, W. C., C. N. Chen, C. T. Hsu, H. C. Lee, H. Y. Fang, M. J. Wang, Y. H. Wu, and T. Y. Fang (2018) Characterization of a recombinant d-allulose 3-epimerase from Agrobacterium sp. ATCC 31749 and identification of an important interfacial residue. Int. J. Biol. Macromol. 112: 767–774.

    Article  CAS  Google Scholar 

  25. Yang, J., C. Tian, T. Zhang, C. Ren, Y. Zhu, Y. Zeng, Y. Men, Y. Sun, and Y. Ma (2019) Development of food-grade expression system for d-allulose 3-epimerase preparation with tandem isoenzyme genes in Corynebacterium glutamicum and its application in conversion of cane molasses to d-allulose. Biotechnol. Bioeng. 116: 745–756.

    Article  CAS  Google Scholar 

  26. Zhu, Z., D. Gao, C. Li, Y. Chen, M. Zhu, X. Liu, M. Tanokura, H. M. Qin, and F. Lu (2019) Redesign of a novel d-allulose 3-epimerase from Staphylococcus aureus for thermostability and efficient biocatalytic production of d-allulose. Microb. Cell Fact. 18: 59.

    Article  Google Scholar 

  27. Patel, S. N., G. Kaushal, and S. P. Singh (2020) A novel d-allulose 3-epimerase gene from the metagenome of a thermal aquatic habitat and d-allulose production by Bacillus subtilis whole-cell catalysis. Appl. Environ. Microbiol. 86: e02605–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2019R1F1A1059906) and R&D Program for Forest Science Technology (Project No. 2020197A00-2022-BA01) provided by the Korea Forest Service (Korea Forestry Promotion Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Su Park.

Ethics declarations

The authors declare no competing financial interests. Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, MJ., Kwon, E.R., Kim, S.J. et al. d-Allulose Production from d-fructose by Putative Dolichol Phosphate Mannose Synthase from Bacillus sp. with Potential d-allulose 3-epimrase Activity. Biotechnol Bioproc E 26, 976–984 (2021). https://doi.org/10.1007/s12257-021-0007-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0007-3

Keywords

Navigation