Skip to main content
Log in

Evaluation of Lipid-polyethylenimine Conjugates as Biocompatible Carriers of CpG Oligodeoxynucleotides to Macrophages

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Considering the potent immune stimulation by CpG oligodeoxynucleotides (CpGs), the development of CpG carriers is a prerequisite for efficient cancer immunotherapy. In this study, we conjugated 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[hydroxyl succinimidyl (polyethylene glycol)] (DSPE-PEG-NHS) with polyethylenimine (PEI) to develop a PEI-PEG-DSPE conjugate that can serve as a biocompatible and efficient CpG carrier. Five types of PEIPEG-DSPE conjugates were developed, each with different molecular weights of PEI and different degrees of DSPEPEG modification, and all exhibited significantly lower cytotoxicity. In particular, compared to CpG delivery via natural PEI, delivery with PEI (25 kDa)-PEG-DSPE and DSPE-PEG-NHS/(amine groups of PEI) at a molar ratio of 0.1 resulted in a higher uptake of CpGs into RAW264.7 cells, probably because of the presence of a hydrophobic lipid moiety. In addition, PEI-PEG-DSPE/CpG complexes triggered significant cytokine secretion (TNF-α) from RAW264.7 cells, comparable to that triggered by PEI/CpG complexes. Thus, PEI-PEG-DSPE conjugates could serve as biocompatible and efficient carriers of the immune stimulator CpG to the macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hanagata, N. (2017) CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies. Int. J. Nanomedicine. 12: 515–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shirota, H., D. Tross, and D. M. Klinman (2015) CpG oligonucleotides as cancer vaccine adjuvants. Vaccines (Basel). 3: 390–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ozcan, G., B. Ozpolat, R. L. Coleman, A. K. Sood, and G. Lopez-Berestein (2015) Preclinical and clinical development of siRNAbased therapeutics. Adv. Drug Deliv. Rev. 87: 108–119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hemmi, H., O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, and S. Akira (2000) A toll-like receptor recognizes bacterial DNA. Nature. 408: 740–745.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, H. and X. D. Gao (2017) Nanodelivery systems for enhancing the immunostimulatory effect of CpG oligodeoxynucleotides. Mater. Sci. Eng. C. Mater. Biol. Appl. 70: 935–946.

    Article  CAS  PubMed  Google Scholar 

  6. Hanagata, N. (2012) Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int. J. Nanomedicine. 7: 2181–2195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chuang, Y. C., J. C. Tseng, L. R. Huang, C. M. Huang, C. Y. F. Huang, and T. H. Chuang (2020) Adjuvant effect of toll-like receptor 9 activation on cancer immunotherapy using checkpoint blockade. Front. Immunol. 11: 1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reilley, M. J., B. Morrow, C. R. Ager, A. Liu, D. S. Hong, and M. A. Curran (2019) TLR9 activation cooperates with T cell checkpoint blockade to regress poorly immunogenic melanoma. J. Immunother. Cancer. 7: 323.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Buss, C. G. and S. N. Bhatia (2020) Nanoparticle delivery of immunostimulatory oligonucleotides enhances response to checkpoint inhibitor therapeutics. Proc. Natl. Acad. Sci. USA. 117: 13428–13436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hsu, C. Y. M. and H. Uludag (2012) Nucleic-acid based gene therapeutics: delivery challenges and modular design of nonviral gene carriers and expression cassettes to overcome intracellular barriers for sustained targeted expression. J. Drug Target. 20: 301–328.

    Article  CAS  PubMed  Google Scholar 

  11. Rattanakiat, S., M. Nishikawa, and Y. Takakura (2012) Selfassembling CpG DNA nanoparticles for efficient antigen delivery and immunostimulation. Eur. J. Pharm. Sci. 47: 352–358.

    Article  CAS  PubMed  Google Scholar 

  12. Jung, H., D. Kim, Y. Y. Kang, H. Kim, J. B. Lee, and H. Mok (2018) CpG incorporated DNA microparticles for elevated immune stimulation for antigen presenting cells. RSC Adv. 8: 6608–6615.

    Article  CAS  Google Scholar 

  13. Jang, H. E., H. Jung, and H. Mok (2017) Cleavable conjugation of CpG oligodeoxynucleotides onto microparticles for facile release and cytokine induction in macrophages. Appl. Biol. Chem. 60: 321–326.

    Article  CAS  Google Scholar 

  14. Kim, H. and W. J. Rhee (2020) Exosome-mediated let7c-5p delivery for breast cancer therapeutic development. Biotechnol. Bioprocess Eng. 25: 513–520.

    Article  CAS  Google Scholar 

  15. Kim, S. H., Y. C. Ryu, H. M. D. Wang, and B. H. Hwang (2020) Optimally fabricated chitosan particles containing ovalbumin induced cellular and humoral immunity in immunized mice. Biotechnol. Bioprocess Eng. 25: 681–689.

    Article  CAS  Google Scholar 

  16. Bae, C. S., C. M. Lee, and T. Ahn (2020) Encapsulation of apoptotic proteins in lipid nanoparticles to induce death of cancer cells. Biotechnol. Bioprocess Eng. 25: 264–271.

    Article  CAS  Google Scholar 

  17. Cheng, T., J. Miao, D. Kai, and H. Zhang (2018) Polyethyleniminemediated CpG oligodeoxynucleotide delivery stimulates bifurcated cytokine induction. ACS Biomater. Sci. Eng. 4: 1013–1018.

    Article  CAS  PubMed  Google Scholar 

  18. Moghimi, S. M., P. Symonds, J. C. Murray, A. C. Hunter, G. Debska, and A. Szewczyk (2005) A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol. Ther. 11: 990–995.

    Article  CAS  PubMed  Google Scholar 

  19. Pandey, A. P. and K. K. Sawant (2016) Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery. Mater. Sci. Eng. C. Mater. Biol. Appl. 68: 904–918.

    Article  CAS  PubMed  Google Scholar 

  20. Florea, B. I., C. Meaney, H. E. Junginger, and G. Borchard (2002) Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. AAPS PharmSci. 4: E12.

    Article  PubMed  Google Scholar 

  21. Wang, J., F. Meng, B. K. Kim, X. Ke, and Y. Yeo (2019) In-vitro and in-vivo difference in gene delivery by lithocholic acidpolyethyleneimine conjugate. Biomaterials. 217: 119296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ngamcherdtrakul, W., T. Sangvanich, M. Reda, S. Gu, D. Bejan, and W. Yantasee (2018) Lyophilization and stability of antibodyconjugated mesoporous silica nanoparticle with cationic polymer and PEG for siRNA delivery. Int. J. Nanomedicine. 13: 4015–4027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, Z., Z. Zhang, C. Zhou, and Y. Jiao (2010) Hydrophobic modifications of cationic polymers for gene delivery. Prog. Polym. Sci. 35: 1144–1162.

    Article  CAS  Google Scholar 

  24. Navarro, G., R. R. Sawant, S. Biswas, S. Essex, C. Tros de Ilarduya, and V. P. Torchilin (2012) P-glycoprotein silencing with siRNA delivered by DOPE-modified PEI overcomes doxorubicin resistance in breast cancer cells. Nanomedicine. 7: 65–78.

    Article  CAS  PubMed  Google Scholar 

  25. Bajaj, A., P. Kondaiah, and S. Bhattacharya (2008) Synthesis and gene transfection efficacies of PEI-cholesterol-based lipopolymers. Bioconjug Chem. 19: 1640–1651.

    Article  CAS  PubMed  Google Scholar 

  26. Cheon, S. H., Z. H. Kim, H. Y. Choi, S. H. Kang, H. J. Nam, J. Y. Kim, and D. I. Kim (2017) Effective delivery of siRNA to transgenic rice cells for enhanced transfection using PEI-based polyplexes. Biotechnol. Bioprocess Eng. 22: 577–585.

    Article  CAS  Google Scholar 

  27. Dube, B., A. Pandey, G. Joshi, and K. Sawant (2017) Hydrophobically modified polyethylenimine-based ternary complexes for targeting brain tumor: stability, in vitro and in vivo studies. Artif. Cells. Nanomed. Biotechnol. 45: 1685–1698.

    Article  CAS  PubMed  Google Scholar 

  28. Forcato, D. O., A. E. Fili, F. E. Alustiza, J. M. Läzaro Martínez, S. Bongiovanni Abel, M. F. Olmos Nicotra, A. P. Alessio, N. Rodríguez, C. Barbero, and P. Bosch (2017) Transfection of bovine fetal fibroblast with polyethylenimine (PEI) nanoparticles: effect of particle size and presence of fetal bovine serum on transgene delivery and cytotoxicity. Cytotechnology. 69: 655–665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen, H. C., B. Sun, K. K. Tran, and H. Shen (2011) Effects of particle size on toll-like receptor 9-mediated cytokine profiles. Biomaterials. 32: 1731–1737.

    Article  CAS  PubMed  Google Scholar 

  30. Bordelon, H., A. S. Biris, C. M. Sabliov, and W. T. Monroe (2011) Characterization of plasmid DNA location within chitosan/PLGA/pDNA nanoparticle complexes designed for gene delivery. J. Nanomater. 2011: 952060.

    Article  Google Scholar 

  31. Kafil, V. and Y. Omidi (2011) Cytotoxic impacts of linear and branched polyethylenimine nanostructures in a431 cells. BioImpacts. 1: 23–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, M., B. Wu, J. D. Tucker, P. Lu, and Q. Lu (2016) Poly(ester amine) constructed from polyethylenimine and pluronic for gene delivery in vitro and in vivo. Drug Deliv. 23: 3224–3233.

    Article  CAS  PubMed  Google Scholar 

  33. Yang, S., D. Wang, Y. Sun, and B. Zheng (2019) Delivery of antisense oligonucleotide using polyethylenimine-based lipid nanoparticle modified with cell penetrating peptide. Drug Deliv. 26: 965–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Navarro, G., R. R. Sawant, S. Essex, C. Tros de Ilarduya, and V. P. Torchilin (2011) Phospholipid-polyethylenimine conjugatebased micelle-like nanoparticles for siRNA delivery. Drug Deliv. Transl. Res. 1: 25–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hong, J., S. H. Ku, M. S. Lee, J. H. Jeong, H. Mok, D. Choi, and S. H. Kim (2014) Cardiac RNAi therapy using RAGE siRNA/deoxycholic acid-modified polyethylenimine complexes for myocardial infarction. Biomaterials. 35: 7562–7573.

    Article  CAS  PubMed  Google Scholar 

  36. Josephs, S. F., T. E. Ichim, S. M. Prince, S. Kesari, F. M. Marincola, A. R. Escobedo, and A. Jafri (2018) Unleashing endogenous TNF-alpha as a cancer immunotherapeutic. J. Transl. Med. 16: 242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, J., J. Li, N. Wang, Q. Ji, M. Li, Y. Nan, E. M. Zhou, Y. Zhang, and C. Wu (2019) The 40 kDa linear polyethylenimine inhibits porcine reproductive and respiratory syndrome virus infection by blocking its attachment to permissive cells. Viruses. 11: 876.

    Article  CAS  PubMed Central  Google Scholar 

  38. Vancha, A. R., S. Govindaraju, K. V. L. Parsa, M. Jasti, M. Gonzälez-García, and R. P. Ballestero (2004) Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer. BMC Biotechnol. 4: 23.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhao, M., M. Li, Z. Zhang, T. Gong, and X. Sun (2016) Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA. Drug Deliv. 23: 2596–2607.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant (NRF- 2020R1A2B 5B01001677) from the National Research Foundation funded by the Ministry of Education, Science, and Technology. The authors declare no conflicts of interest. Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyejung Mok.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Choi, E.S., You, G. et al. Evaluation of Lipid-polyethylenimine Conjugates as Biocompatible Carriers of CpG Oligodeoxynucleotides to Macrophages. Biotechnol Bioproc E 26, 586–594 (2021). https://doi.org/10.1007/s12257-020-0366-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0366-1

Keywords

Navigation