Skip to main content
Log in

Enhanced Production of 5-aminolevulinic Acid via Flux Redistribution of TCA Cycle toward l-Glutamate in Corynebacterium glutamicum

  • Research Paper
  • Metabolic Engineering and Applied Microbiology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

5-Aminolevulinic acid (ALA), a valuable nonproteinogenic amino acid, has received increasing attention in various fields including medicine, agriculture, and cosmetics. Here, we developed metabolically engineered Corynebacterium glutamicum to enhance ALA production. To achieve this object, we focused on the flux redistribution of the TCA cycle toward l-glutamate and introduction of the heterogenous ALA transporter in C. glutamicum. First, the oxoglutarate dehydrogenase inhibitor (OdhI) was mutated by site-directed mutagenesis to prevent the phosphorylation that abolishes the capability of OdhI protein to inhibit oxoglutarate dehydrogenase complex activity. The overexpression of the double-mutated OdhI, T14A/T15A, showed the highest l-glutamate and ALA production compared with that of the native and single-mutated OdhI. To increase ALA secretion from the engineered strain, the ALA exporter RhtA from Escherichia coli was introduced and allowed 2.46 ± 0.11 g/L of ALA production, representing a 1.28-fold increase in extracellular ALA production. In the final strain, the induction of triggers, including Tween 40 and ethambutol, was performed to amplify the effect of the flux redistribution toward ALA. A significant increase in ALA production was observed in the induction of triggers. In particular, ethambutol induction showed the best result, corresponding to 2.9 ± 0.15 g/L of ALA production. Therefore, this biotechnological model enables the efficient extracellular production of ALA from glucose in C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, L., J. L. Martinez, Z. Liu, D. Petranovic, and J. Nielsen (2014) Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae. Metab. Eng. 21: 9–16.

    CAS  PubMed  Google Scholar 

  2. Moore, S. J., A. D. Lawrence, R. Biedendieck, E. Deery, S. Frank, M. J. Howard, S. E. J. Rigby, and M. J. Warren (2013) Elucidation of the anaerobic pathway for the corrin component of cobalamin (vitamin B-12). Proc. Natl. Acad. Sci. USA. 110: 14906–14911.

    CAS  PubMed  Google Scholar 

  3. Yu, C. H. and C. C. Yu (2014) Photodynamic therapy with 5-aminolevulinic acid (ALA) impairs tumor initiating and chemoresistance property in head and neck cancer-derived cancer stem cells. PLoS One. 9: e87129.

    PubMed  PubMed Central  Google Scholar 

  4. Nguyen, H., H. S. Kim, and S. Jung (2016) Altered tetrapyrrole metabolism and transcriptome during growth-promoting actions in rice plants treated with 5-aminolevulinic acid. Plant Growth Regul. 78: 133–144.

    CAS  Google Scholar 

  5. Tran, N. T., D. N. Pham, and C. J. Kim (2019) Production of 5-aminolevulinic acid by recombinant Streptomyces coelicolor expressing hemA from Rhodobacter sphaeroides. Biotechnol. Bioprocess Eng. 24: 488–499.

    CAS  Google Scholar 

  6. Ramzi, A. B., J. E. Hyeon, S. W. Kim, C. Park, and S. O. Han (2015) 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzyme Microb. Technol. 81: 1–7.

    CAS  PubMed  Google Scholar 

  7. Sasaki, K., M. Watanabe, T. Tanaka, and T. Tanaka (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl. Microbiol. Biotechnol. 58: 23–29.

    CAS  PubMed  Google Scholar 

  8. Zhang, J., H. Weng, Z. Zhou, G. Du, and Z. Kang (2019) Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli. Bioresour. Technol. 274: 353–360.

    CAS  PubMed  Google Scholar 

  9. Xie, L., M. A. Eiteman, and E. Altman (2003) Production of 5-aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase. Biotechnol. Lett. 25: 1751–1755.

    CAS  PubMed  Google Scholar 

  10. Fu, W., J. Lin, and P. Cen (2007) 5-aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain. Appl. Microbiol. Biotechnol. 75: 777–782.

    CAS  PubMed  Google Scholar 

  11. Yang, P., W. Liu, X. Cheng, J. Wang, Q. Wang, and Q. Qi (2016) A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Appl. Environ. Microbiol. 82: 2709–2717.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Feng, L., Y. Zhang, J. Fu, Y. Mao, T. Chen, X. Zhao, and Z. Wang (2016) Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol. Bioeng. 113: 1284–1293.

    CAS  PubMed  Google Scholar 

  13. Ding, W., H. Weng, G. Du, J. Chen, and Z. Kang (2017) 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli. J. Ind. Microbiol. Biotechnol. 44: 1127–1135.

    CAS  PubMed  Google Scholar 

  14. Wang, L., S. Wilson, and T. Elliott (1999) A mutant HemA protein with positive charge close to the N terminus is stabilized against heme-regulated proteolysis in Salmonella typhimurium. J. Bacteriol. 181: 6033–6041.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang, Z., Y. Wang, P. Gu, Q. Wang, and Q. Qi (2011) Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab. Eng. 13: 492–498.

    CAS  PubMed  Google Scholar 

  16. Zhang, J., Z. Kang, J. Chen, and G. Du (2015) Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci. Rep. 5: 8584.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Noh, M. H., H. G. Lim, S. Park, S. W. Seo, and G. Y. Jung (2017) Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metab. Eng. 43: 1–8.

    CAS  PubMed  Google Scholar 

  18. Shirai, T., K. Fujimura, C. Furusawa, K. Nagahisa, S. Shioya, and H. Shimizu (2007) Study on roles of anaplerotic pathways in glutamate overproduction of Corynebacterium glutamicum by metabolic flux analysis. Microb. Cell Fact. 6: 19.

    PubMed  PubMed Central  Google Scholar 

  19. Kim, J., T. Hirasawa, M. Saito, C. Furusawa, and H. Shimizu (2011) Investigation of phosphorylation status of OdhI protein during penicillin- and Tween 40-triggered glutamate overproduction by Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 91: 143–151.

    CAS  PubMed  Google Scholar 

  20. Wen, J. and J. Bao (2019) Engineering Corynebacterium glutamicum triggers glutamic acid accumulation in biotin-rich corn stover hydrolysate. Biotechnol. Biofuels. 12: 86.

    PubMed  PubMed Central  Google Scholar 

  21. Joo, Y. C., S. K. You, S. K. Shin, Y. J. Ko, K. H. Jung, S. A. Sim, and S. O. Han (2017) Bio-based production of dimethyl itaconate from rice wine waste-derived itaconic acid. Biotechnol. J. 12: 1700114.

    Google Scholar 

  22. Joo, Y. C., Y. J. Ko, S. K. You, S. K. Shin, J. E. Hyeon, A. S. Musaad, and S. O. Han (2018) Creating a new pathway in Corynebacterium glutamicum for the production of taurine as a food additive. J. Agric. Food Chem. 66: 13454–13463.

    CAS  PubMed  Google Scholar 

  23. Jeong, Y. J., J. W. Choi, M. S. Cho, and K. J. Jeong (2019) Isolation of novel exo-type β-agarase from Gilvimarinus chinensis and high-level secretory production in Corynebacterium glutamicum. Biotechnol. Bioprocess Eng. 24: 250–257.

    CAS  Google Scholar 

  24. Xu, D. Y., J. Zhao, G. Cao, J. Wang, Q. Li, P. Zheng, S. Zhao, and J. Sun (2018) Removal of feedback inhibition of Corynebacterium glutamicum phosphoenolpyruvate carboxylase by addition of a short terminal peptide. Biotechnol. Bioprocess Eng. 23: 72–78.

    CAS  Google Scholar 

  25. Yu, X., H. Jin, W. Liu, Q. Wang, and Q. Qi (2015) Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose. Microb. Cell Fact. 14: 183.

    PubMed  PubMed Central  Google Scholar 

  26. Zhang, B. and B. C. Ye (2018) Pathway engineering in Corynebacterium glutamicum S9114 for 5-aminolevulinic acid production. 3 Biotech. 8: 247.

    PubMed  PubMed Central  Google Scholar 

  27. Asakura, Y., E. Kimura, Y. Usuda, Y. Kawahara, K. Matsui, T. Osumi, and T. Nakamatsu (2007) Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl. Environ. Microbiol. 73: 1308–1319.

    CAS  PubMed  Google Scholar 

  28. Niebisch, A., A. Kabus, C. Schultz, B. Weil, and M. Bott (2006) Corynebacterial protein kinase G controls 2-oxoglutarate dehydrogenase activity via the phosphorylation status of the OdhI protein. J. Biol. Chem. 281: 12300–12307.

    CAS  PubMed  Google Scholar 

  29. Kim, J., H. Fukuda, T. Hirasawa, K. Nagahisa, K. Nagai, M. Wachi, and H. Shimizu (2010) Requirement of de novo synthesis of the OdhI protein in penicillin-induced glutamate production by Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 86: 911–920.

    CAS  PubMed  Google Scholar 

  30. Nara, T., H. Samejima, and S. Kinoshita (1964) Effect of penicillin on amino acid fermentation. Agric. Biol. Chem. 28: 120–124.

    Google Scholar 

  31. Takinami, K., H. Yoshii, H. Tsuri, and H. Okada (1965) Biochemical effects of fatty acid and its derivatives on L-glutamic acid fermentation Part 3. Biotin-tween 60 relationship in accumulation of L-glutamic acid and growth of Brevibacterium Lactofermentum. Agric. Biol. Chem. 29: 351–359.

    CAS  Google Scholar 

  32. Radmacher, E., K. C. Stansen, G. S. Besra, L. J. Alderwick, W. N. Maughan, G. Hollweg, H. Sahm, V. F. Wendisch, and L. Eggeling (2005) Ethambutol, a cell wall inhibitor of Mycobacterium tuberculosis, elicits L-glutamate efflux of Corynebacterium glutamicum. Microbiology. 151: 1359–1368.

    CAS  PubMed  Google Scholar 

  33. Shiio, I., S. I. Otsuka, and N. Katsuya (1962) Effect of biotin on the bacterial formation of glutamic acid. II. Metabolism of glucose. J. Biochem. 52: 108–116.

    CAS  PubMed  Google Scholar 

  34. Eikmanns, B. J., E. Kleinertz, W. Liebl, and H. Sahm (1991) A family of Corynebacterium glutamicum/Escherichia coli shuttle vectors for cloning, controlled gene expression, and promoter probing. Gene. 102: 93–98.

    CAS  PubMed  Google Scholar 

  35. Jiang, Y., F. Qian, J. Yang, Y. Liu, F. Dong, C. Xu, B. Sun, B. Chen, X. Xu, Y. Li, R. Wang, and S. Yang (2017) CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat. Commun. 8: 15179.

    PubMed  PubMed Central  Google Scholar 

  36. Cleto, S., J. V. Jensen, V. F. Wendisch, and T. K. Lu (2016) Corynebacterium glutamicum metabolic engineering with CRISPR interference (CRISPRi). ACS Synth. Biol. 5: 375–385.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ko, Y. J., Y. C. Joo, J. E. Hyeon, E. Lee, M. E. Lee, J. Seok, S. W. Kim, C. Park, and S. O. Han (2018) Biosynthesis of organic photosensitizer Zn-porphyrin by diphtheria toxin repressor (DtxR)-mediated global upregulation of engineered heme biosynthesis pathway in Corynebacterium glutamicum. Sci. Rep. 8: 14460.

    PubMed  PubMed Central  Google Scholar 

  38. van der Rest, M. E., C. Lange, and D. Molenaar (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52: 541–545.

    CAS  PubMed  Google Scholar 

  39. Park, S. H., H. U. Kim, T. Y. Kim, J. S. Park, S. S. Kim, and S. Y. Lee (2014) Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat. Commun. 5: 4618.

    CAS  PubMed  Google Scholar 

  40. Mauzerall, D. and S. Granick (1956) The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J. Biol. Chem. 219: 435–446.

    CAS  PubMed  Google Scholar 

  41. Schultz, C., A. Niebisch, L. Gebel, and M. Bott (2007) Glutamate production by Corynebacterium glutamicum: dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl. Microbiol. Biotechnol. 76: 691–700.

    CAS  PubMed  Google Scholar 

  42. Nguyen, A. Q. D., J. Schneider, G. K. Reddy, and V. F. Wendisch (2015) Fermentative production of the diamine putrescine: System metabolic engineering of Corynebacterium Glutamicum. Metabolites. 5: 211–231.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2018R1A2B2003704) and supported by a Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ok Han.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, Y.J., You, S.K., Kim, M. et al. Enhanced Production of 5-aminolevulinic Acid via Flux Redistribution of TCA Cycle toward l-Glutamate in Corynebacterium glutamicum. Biotechnol Bioproc E 24, 915–923 (2019). https://doi.org/10.1007/s12257-019-0376-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0376-z

Keywords

Navigation