Skip to main content
Log in

Structure-based Mutational Studies of D-3-hydroxybutyrate Dehydrogenase for Substrate Recognition of Aliphatic Hydroxy Acids with a Variable Length of Carbon Chain

  • Research Paper
  • Protein Engineering and Enzyme Biotechnology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Native 3-hydroxybutyrate dehydrogenase from Alcaligenes faecalis can catalyze the reversible reduction of acetoacetate, a four carbon chain oxo acid. This enzyme has been engineered to enable the reduction of levulinic acid, with one carbon longer than acetoacetate. In this study, the native and engineered enzymes were subjected to the catalysis of oxo acids with a carbon chain length of 3 to 8, in order to examine the capability of the enzyme to work on various platform chemicals. The engineered enzyme could reduce the C7 and C8 oxo acids whereas the wild-type had no activity on these substrates. Docking simulation has indicated Tyr155 and Ser142 are key residues for the catalysis. In addition, stable hydrogen bond formation between Gln196 and the substrates affects the turnover rate. Mutation sites in the engineered enzyme were focused on creating larger active site volume for substrates with extended chain lengths. Both qualitative and quantitative structural basis for the enzyme substrate specificity on alpha, beta, gamma and omega hydroxy acids could be elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wohlgemuth, R. (2010) Biocatalysis-key to sustainable industrial chemistry. Curr. Opin. Biotechnol. 21: 713–724.

    Article  CAS  PubMed  Google Scholar 

  2. Privett, H. K., G. Kiss, T. M. Lee, R. Blomberg, R. A. Chica, L. M. Thomas, D. Hilvert, K. N. Houk, and S. L. Mayo (2012) Iterative approach to computational enzyme design. Proc. Natl. Acad. Sci. U.S.A. 109: 3790–3795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bornscheuer, U. T., G. W. Huisman, R. J. Kazlauskas, S. Lutz, J. C. Moore, and K. Robins (2012) Engineering the third wave of biocatalysis. Nature. 485: 185–194.

    Article  CAS  PubMed  Google Scholar 

  4. Greenhagen, B. T., P. E. O'maille, J. P. Noel, and J. Chappell (2006) Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases. Proc. Natl. Acad. Sci. U.S.A. 103: 9826–9831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang, K., M. R. Sawaya, D. S. Eisenberg, and J. C. Liao (2008) Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl. Acad. Sci. U.S.A. 105: 20653–20658.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Savile, C. K., J. M. Janey, E. C. Mundorff, J. C. Moore, S. Tam, W. R. Jarvis, J. C. Colbeck, A. Krebber, F. J. Fleitz, J. Brands, P. N. Devine, G. W. Huisman, and G. J. Hughes (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science. 329: 305–309.

    Article  CAS  PubMed  Google Scholar 

  7. Hoque, M. M., S. Shimizu, M. T. Hossain, T. Yamamoto, S. Imamura, K. Suzuki, M. Tsunoda, H. Amano, T. Sekiguchi, and A. Takenaka (2008) The structures of Alcaligenes faecalis D-3-hydroxybutyrate dehydrogenase before and after NAD+ and acetate binding suggest a dynamical reaction mechanism as a member of the SDR family. Acta Crystallogr. D Biol. Crystallogr. 64: 496–505.

    Article  CAS  PubMed  Google Scholar 

  8. Hoque, M. M., S. Shimizu, E. C. Juan, Y. Sato, M. T. Hossain, T. Yamamoto, S. Imamura, K. Suzuki, H. Amano, T. Sekiguchi, M. Tsunoda, and A. Takenaka (2009) Structure of D-3-hydroxybutyrate dehydrogenase prepared in the presence of the substrate D-3-hydroxybutyrate and NAD+. Acta Crystallogr. F Struct. Biol. Cryst. Commun. 65: 331–335.

    Article  CAS  Google Scholar 

  9. Senior, P. J. and E. A. Dawes (1973) The regulation of poly-beta-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem. J. 134: 225–238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lenz, R. W. and R. H. Marchessault (2005) Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology. Biomacro-molecules. 6: 1–8.

    Article  CAS  Google Scholar 

  11. Saadat, A., A. Behnamghader, S. Karbasi, D. Abedi, M. Soleimani, and A. Shafiee (2013) Comparison of acellular and cellular bioactivity of poly 3-hydroxybutyrate/hydroxyapatite nano-composite and poly 3-hydroxybutyrate scaffolds. Biotechnol. Bioprcess Eng. 18: 587–593.

    Article  CAS  Google Scholar 

  12. Yeon, Y. J., H. Y. Park, and Y. J. Yoo (2013) Enzymatic reduction of levulinic acid by engineering the substrate specificity of 3-hydroxybutyrate dehydrogenase. Bioresource Technol. 134: 377–380.

    Article  CAS  Google Scholar 

  13. Bozell, J. J., L. Moens, D. C. Elliott, Y. Wang, G. G. Neuenscwander, S. W. Fitzpatrick, R. J. Bilski, and J. L. Jarnefeld (2000) Production of levulinic acid and use as a platform chemical for derived products. Resour. Conserv. Recycl. 28: 227–239.

    Article  Google Scholar 

  14. Bozell, J. J. and G. R. Petersen (2010) Technology development for the production of biobased products from biorefinery carbohydrates—the US department of energy's “top 10” revisited. Green Chem. 12: 539–554.

    Article  CAS  Google Scholar 

  15. Zhang, Z. (2016) Synthesis of γ-valerolactone from carbohydrates and its applications. ChemSusChem. 9: 156–171.

    Article  CAS  PubMed  Google Scholar 

  16. Bond, J. Q., D. M. Alonso, D. Wang, R. M. West, and J. A. Dumesic (2010) Integrated catalytic conversion of gammavalerolactone to liquid alkenes for transportation fuels. Science. 327: 1110–1114.

    Article  CAS  PubMed  Google Scholar 

  17. Xiong, M., J. Deng, A. P. Woodruff, M. Zhu, J. Zhou, S. W. Park, H. Li, Y. Fu, and K. Zhang (2012) A bio-catalytic approach to aliphatic ketones. Sci Rep. 2: 311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kornhauser, A., S. G. Coelho, and V. J. Hearing (2010) Applications of hydroxy acids: Classification, mechanisms, and photoactivity. Clin. Cosmet. Investig. Dermatol. 3: 135–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bhalla, T., V. Kumar, and S. Bhatia (2014) Hydroxy acids: production and applications. pp. 56–76. In: R. S. Singh, A. Pandey, and C. Larroche (eds.). Advances in Industrial Biotechnology. I. K. International Publishing House Pvt. Ltd., New Delhi, India

    Google Scholar 

  20. Mitra, A. K. and S. K. Samanta (2011) Drug conjugates. US Patent 12,999,149

    Google Scholar 

  21. Jestin, J.-L. and S. Vichier-Guerre (2005) How to broaden enzyme substrate specificity: Strategies, implications and applications. Res. Microbiol. 156: 961–966.

    Article  CAS  PubMed  Google Scholar 

  22. Wilks, H. M., D. J. Halsall, T. Atkinson, W. N. Chia, A. R. Clarke, and J. J. Holbrook (1990) Designs for a broad substrate specificity keto acid dehydrogenase. Biochemistry. 29: 8587–8591.

    Article  CAS  PubMed  Google Scholar 

  23. Yeon, Y. J., H. J. Park, H.-Y Park, and Y. J. Yoo (2014) Effect of his-tag location on the catalytic activity of 3-hydroxybutyrate dehydrogenase. Biotechnol. Bioprocess Eng. 19: 798–802.

    Article  CAS  Google Scholar 

  24. Lee, H. S., J. Park, Y. J. Yoo, and Y. J. Yeon (2019) A novel D-2-hydroxy acid dehydrogenase with high substrate preference for phenylpyruvate originating from lactic acid bacteria: Structural analysis on the substrate specificity. Enzyme Microb. Technol. 125: 37–44.

    Article  CAS  PubMed  Google Scholar 

  25. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  26. Schrödinger (2018) Release 2018-4: Prime, Schrödinger, LLC, New York, NY

    Google Scholar 

  27. Jacobson, M. P, D. L. Pincus, C. S. Rapp, T. J. Day, B. Honig, D. E. Shaw, and R. A. Friesner (2004) A hierarchical approach to all-atom protein loop prediction Proteins. 55: 351–367.

    Article  CAS  PubMed  Google Scholar 

  28. Schrödinger (2018) Release 2018-4: Ligprep, Schrödinger, LLC, New York, NY

    Google Scholar 

  29. Kenyon, V., I. Chorny, W. J. Carvajal, T. R. Holman, and M. P Jacobson (2006) Novel human lipoxygenase inhibitors discovered using virtual screening with homology models. J. Med. Chem. 49: 1356–1363.

    Article  CAS  PubMed  Google Scholar 

  30. Schrödinger (2018) Release 2018-4: Giide, Schrödinger, LLC, New York, NY

    Google Scholar 

  31. Friesner, R. A., R. B. Murphy, M. P Repasky, L. L. Frye, J. R. Greenwood, T. A. Halgren, P. C. Sanschagrin, and D. T. Mainz (2006) Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49: 6177–6196.

    Article  CAS  PubMed  Google Scholar 

  32. Yeon, Y. J., H.-Y. Park, K. Park, H. J. Park, and Y. J. Yoo (2016) Structural basis for the substrate specificity of 3-hydroxybutyrate dehydrogenase. Biotechnol. Bioprocess Eng. 21: 364–372.

    Article  CAS  Google Scholar 

  33. Hammes-Schiffer, S. (2002) Comparison of hydride, hydrogen atom, and proton-coupled electron transfer reactions. ChemPhysChem. 3: 33–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the C1 Gas Refinery Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015M3D3A1A01064929).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinwon Lee or Young Joo Yeon.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, HS., Na, J.G., Lee, J. et al. Structure-based Mutational Studies of D-3-hydroxybutyrate Dehydrogenase for Substrate Recognition of Aliphatic Hydroxy Acids with a Variable Length of Carbon Chain. Biotechnol Bioproc E 24, 605–612 (2019). https://doi.org/10.1007/s12257-019-0135-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0135-1

Keywords

Navigation