Skip to main content
Log in

Whole-cell Immobilization of Engineered Escherichia coli JY001 with Barium-alginate for Itaconic Acid Production

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Itaconic acid is an important organic acid and a major component of various polymers. It is used in resins, superabsorbent polymers, and substitutes for petrochemicalbased monomers such as acrylic and methacrylic acids. Itaconic acid is primarily produced by the fungus Aspergillus terreus, which yields a high titer with albeit long fermentation period and by-products. In our previous study, Escherichia coli JY001 was reported to produce itaconic acid using citric acid in whole-cell reaction resulting in higher itaconic acid productivity with less by-products formation. The present study aimed to increase whole-cell enzyme stability and reusability, via immobilization of E. coli JY001 using barium-alginate beads. We optimized the cations, temperature, pH, alginate, BaCl2 concentration, cell density per bead, and CTAB content to improve transfer rate of substrates and products. Under the optimized conditions, immobilized whole cells were stable for four repeated cycles of itaconic acid production. The present results would strengthen the basis for a continuous itaconic acid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magalhães, A. I., J. C. de Carvalho, J. D. C. Medina, and C. R. Soccol (2017) Downstream process development in biotechnological itaconic acid manufacturing. Appl. Microbiol. Biotechnol. 101: 1–12.

    Article  CAS  PubMed  Google Scholar 

  2. Willke, T. and K. D. Vorlop (2001) Biotechnological production of itaconic acid. Appl. Microbiol. Biotechnol. 56: 289–295.

    Article  CAS  PubMed  Google Scholar 

  3. Robert, T. and S. Friebel (2016) Itaconic acid–a versatile building block for renewable polyesters with enhanced functionality. Green Chem. 18: 2922–2934.

    Article  CAS  Google Scholar 

  4. Blazeck, J., A. Hill, M. Jamoussi, A. Pan, J. Miller, and H. S. Alper (2015) Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab. Eng. 32: 66–73.

    Article  CAS  PubMed  Google Scholar 

  5. Otten, A., M. Brocker, and M. Bott (2015) Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab. Eng. 30: 156–165.

    Article  CAS  PubMed  Google Scholar 

  6. Crook, N. C., A. C. Schmitz, and H. S. Alper (2013) Optimization of a yeast RNA interference system for controlling gene expression and enabling rapid metabolic engineering. ACS Synthetic Biolog. 3: 307–313.

    Article  CAS  Google Scholar 

  7. Chin, T., M. Sano, T. Takahashi, H. Ohara, and Y. Aso (2015) Photosynthetic production of itaconic acid in Synechocystis sp. PCC6803. J. Biotechnol. 195: 43–45.

    Article  CAS  PubMed  Google Scholar 

  8. Huang, X., X. Lu, Y. Li, X. Li, and J.-J. Li (2014) Improving itaconic acid production through genetic engineering of an industrial Aspergillus terreus strain. Microbial Cell Factorie. 13: 119.

    Article  CAS  Google Scholar 

  9. van der Straat, L., M. Vernooij, M. Lammers, W. van den Berg, T. Schonewille, J. Cordewener, I. van der Meer, A. Koops, and L. H. de Graaff (2014) Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microbial Cell Factorie. 13: 11.

    Article  CAS  Google Scholar 

  10. Brainard, A. P. (1999) Recent Progress in Bioconversion of Lignocellulosics. Springer Science & Business Media.

    Google Scholar 

  11. Kuenz, A., Y. Gallenmüller, T. Willke, and K.-D. Vorlop (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl. Microbiol. Biotechnol. 96: 1209–1216.

    Article  CAS  PubMed  Google Scholar 

  12. Vuoristo, K. S., A. E. Mars, J. V. Sangra, J. Springer, G. Eggink, J. P. Sanders, and R. A. Weusthuis (2015) Metabolic engineering of itaconate production in Escherichia coli. Appl. Microbiol. Biotechnol. 99: 221–228.

    Article  CAS  PubMed  Google Scholar 

  13. Okabe, M., D. Lies, S. Kanamasa, and E. Y. Park (2009) Biotechnological production of itaconic acid and its biosynthesis in Aspergillus terreus. Appl. Microbiol. Biotechnol. 84: 597–606.

    Article  CAS  PubMed  Google Scholar 

  14. Straathof, A. J. J. (2011) The proportion of downstream costs in fermentative production processes. Comprehensive Biotechnol. 2: 811–814.

    Article  Google Scholar 

  15. Kim, J., H. M. Seo, S. K. Bhatia, H. S. Song, J. H. Kim, J. M. Jeon, K. Y. Choi, W. Kim, J. J. Yoon, Y. G. Kim, and Y. H. Yang (2017) Production of itaconate by whole–cell bioconversion of citrate mediated by expression of multiple cis–aconitate decarboxylase (cadA) genes in Escherichia coli. Sci Rep. 7: 39768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Asgher, M., M. Shahid, S. Kamal, and H. M. N. Iqbal (2014) Recent trends and valorization of immobilization strategies and ligninolytic enzymes by industrial biotechnology. J. Mol. Catal. B Enzym. 101: 56–66.

    Article  CAS  Google Scholar 

  17. Zhang, Y.-W., P. Prabhu, and J.-K. Lee (2010) Alginate immobilization of recombinant Escherichia coli whole cells harboring L–arabinose isomerase for L–ribulose production. Bioprocess Biosystems Eng. 33: 741–748.

    Article  CAS  Google Scholar 

  18. Park, M. C., J. S. Lim, J. C. Kim, S. W. Park, and S. W. Kim (2005) Continuous production of neo–fructooligosaccharides by immobilization of whole cells of Penicillium citrinum. Biotechnol. Lett. 27: 127–130.

    Article  CAS  PubMed  Google Scholar 

  19. Karube, I., T. Matsunaga, S. Tsuru, and S. Suzuki (1976) Continous hydrogen production by immobilized whole cells of Clostridium butyricum. Biochem. Biophys. Act. 444: 338–343.

    Article  CAS  Google Scholar 

  20. Roy, I., S. Sharma, and M. N. Gupta (2004) Smart biocatalysts: design and applications. pp. 159–189. New Trends and Developments in Biochemical Engineering. Springer, City.

    Google Scholar 

  21. Chan, L. W. and P. W. S. Heng (2002) Effects of aldehydes and methods of cross–linking on properties of calcium alginate microspheres prepared by emulsification. Biomaterial. 23: 1319–1326.

    Article  CAS  Google Scholar 

  22. Chan, L. W., Y. Jin, and P. W. S. Heng (2002) Cross–linking mechanisms of calcium and zinc in production of alginate microspheres. Int. J. Pharm. 242: 255–258.

    Article  CAS  PubMed  Google Scholar 

  23. Kongruang, S. and B. Wonganu (2009) Entrapment by Ca–Alginate Immobilized Yeast Cells for Dried Longan Wine Production. Proceedings of the Current Research Topics in Applied Microbiology and Microbial Biotechnology–Proceedings of the Ii International Conference on Environmental, Industrial and Applied Microbiology (Biomicro World 2007).

    Google Scholar 

  24. Chen, R. R. (2007) Permeability issues in whole–cell bioprocesses and cellular membrane engineering. Appl. Microbiol. Biotechnol. 74: 730–738.

    Article  CAS  PubMed  Google Scholar 

  25. Baumgart, M. and M. Bott (2011) Biochemical characterisation of aconitase from Corynebacterium glutamicum. J. Biotechnol. 154: 163–170.

    Article  CAS  PubMed  Google Scholar 

  26. Steiger, M. G., M. L. Blumhoff, D. Mattanovich, and M. Sauer (2013) Biochemistry of microbial itaconic acid production. Front Microbiol. 4: 23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Taylor, R. G., D. C. Walker, and R. McInnes (1993) E. coli host strains significantly affect the quality of small scale plasmid DNA preparations used for sequencing. Nucleic Acids Res. 21: 1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) (NRF-2015M1A5A1037196, NRF-2017R1D1A1B03033594), Research Program to solve social issues of the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2017M3A9E4077234). This work was also supported by Polar Academic Program (PAP, PE18900).

Dr. Ranjit Gurav is thankful to Konkuk University, Korea for providing financial support under KU research professor program.

Consulting service from the Microbial Carbohydrate Resource Bank (MCRB, Seoul, Korea) was kindly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hwang-Soo Joo or Yung-Hun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, YM., Gurav, R., Kim, J. et al. Whole-cell Immobilization of Engineered Escherichia coli JY001 with Barium-alginate for Itaconic Acid Production. Biotechnol Bioproc E 23, 442–447 (2018). https://doi.org/10.1007/s12257-018-0170-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0170-3

Keywords

Navigation