Skip to main content
Log in

Purification and Characterization of Microbial Protease Produced Extracellularly from Bacillus subtilis FBL-1

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

An ammonium sulfate precipitation of fermentation broth produced by Bacillus subtilis FBL-1 resulted in 2.9-fold increase of specific protease activity. An eluted protein fraction from the column chromatographies using DEAE-Cellulose and Sephadex G-75 had 94.2- and 94.9-fold higher specific protease activity, respectively. An SDS-PAGE revealed a band of purified protease at approximately 37.6 kDa. Although purified protease showed the highest activity at 45°C and pH 9.0, the activity remained stable in temperature range from 30 to 50°C and pH range from 7.0 to 9.0. Protease activity was activated by metal ions such as Ca2+, Mg2+, Mn2+, Fe2+, Ca2+ and K+, but 10 mM Fe3+ significantly inhibited enzyme activity (53%). Protease activity was inhibited by 2 mM EDTA as a metalloprotease inhibitor, but it showed good stability against surfactants and organic solvents. The preferred substrates for protease activity were found to be casein (100%) and soybean flour (71.6%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hartley, B. S. (1960) Proteolytic enzymes. Annu. Rev. Biochem. 29: 45–72.

    Article  CAS  Google Scholar 

  2. Liao, C. H. and D. E. McCallus (1998) Biochemical and genetic characterization of an extracellular protease from Pseudomonas fluorescens CY091. Appl. Environ. Microbiol. 64: 914–921.

    CAS  Google Scholar 

  3. Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597–635.

    CAS  Google Scholar 

  4. Deng, A., J. Wu, Y. Zhang, G. Zhang, and T. Wen (2010) Purification and characterization of a surfactant-stable highalkaline protease from Bacillus sp. B001. Bioresour. Technol. 101: 7111–7117.

    Google Scholar 

  5. Godfrey, T. and J. Reichelt (1984) Industrial enzymology: The application of enzymes in industry. The Nature Press, NY, USA.

    Google Scholar 

  6. Li, Q., L. Yi, P. Marek, and B. L. Iverson (2013) Commercial proteases: Present and future. FEBS Lett. 587: 1155–1163.

    Article  CAS  Google Scholar 

  7. Kim, M., J. B. Si, and Y. J. Wee (2016) Identification of a newly isolated protease-producing bacterium, Bacillus subtilis FBL-1, from soil. Microbiol. Biotechnol. Lett. 44: 185–193.

    Article  CAS  Google Scholar 

  8. Kim, M., J. B. Si, L. V. Reddy, and Y. J. Wee (2016) Enhanced production of extracellular proteolytic enzyme excreted by a newly isolated Bacillus subtilis FBL-1 through combined utilization of statistical design and response surface methodology. RSC Adv. 6: 51270–51278.

    Article  CAS  Google Scholar 

  9. Folin, O. and V. Ciocalteu (1927) On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 73: 627–650.

    CAS  Google Scholar 

  10. Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76–85.

    Article  CAS  Google Scholar 

  11. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  12. Reddy, L. V. A., Y. J. Wee, and H. W. Ryu (2008) Purification and characterization of an organic solvent and detergent-tolerant novel protease produced by Bacillus sp RKY3. J. Chem. Technol. Biotechnol. 83: 1526–1533.

    Article  CAS  Google Scholar 

  13. Yang, J. K., I. L. Shih, Y. M. Tzeng, and S. L. Wang (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enz. Microb. Technol. 26: 406–413.

    Article  CAS  Google Scholar 

  14. Bose, A., V. Chawdhary, H. Keharia, and R. B. Subramanian (2014) Production and characterization of a solvent-tolerant protease from a novel marine isolate Bacillus tequilensis P15. Ann. Microbiol. 64: 343–354.

    Article  CAS  Google Scholar 

  15. Manni, L., K. Jellouli, R. Agrebi, A. Bayoudh, and M. Nasri (2008) Biochemical and molecular characterization of a novel calcium-dependent metalloprotease from Bacillus cereus SV1. Proc. Biochem. 43: 522–530.

    Article  CAS  Google Scholar 

  16. Shah, K., K. Mody, J. Keshri, and B. Jha (2010) Purification and characterization of a solvent, detergent and oxidizing agent tolerant protease from Bacillus cereus isolated from the Gulf of Khambhat. J. Mol. Catal. B-Enz. 67: 85–91.

    Article  CAS  Google Scholar 

  17. McConn, J. D., D. Tsuru, and K. T. Yasunobu (1964) Bacillus subtilis neutral proteinase. I. A zinc enzyme of high specific activity. J. Biol. Chem. 239: 3706–3715.

    CAS  Google Scholar 

  18. Haddar, A., R. Agrebi, A. Bougatef, N. Hmidet, A. Sellami-Kamoun, and M. Nasri (2009) Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: Purification, characterization and potential application as a laundry detergent additive. Bioresour. Technol. 100: 3366–3373.

    Article  CAS  Google Scholar 

  19. Smith, C. A., H. S. Toogood, H. M. Baker, R. M. Daniel, and E. N. Baker (1999) Calcium-mediated thermostability in the subtilisin superfamily: The crystal structure of Bacillus Ak.1 protease at 1.8 å resolution. J. Mol. Biol. 294: 1027–1040.

    Article  CAS  Google Scholar 

  20. Sellami-Kamoun, A., A. Haddar, H. Ali Nel, B. Ghorbel-Frikha, S. Kanoun, and M. Nasri (2008) Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol. Res. 163: 299–306.

    Article  CAS  Google Scholar 

  21. Beg, Q. K. and R. Gupta (2003) Purification and characterization of an oxidation-stable, thiol-dependent serine alkaline protease from Bacillus mojavensis. Enz. Microb. Technol. 32: 294–304.

    Article  CAS  Google Scholar 

  22. Divakar, K., J. D. A. Priya, and P. Gautam (2010) Purification and characterization of thermostable organic solvent-stable protease from Aeromonas veronii PG01. J. Mol. Catal. B-Enz. 66: 311–318.

    Article  CAS  Google Scholar 

  23. Abd Rahman, R. N. Z. R., S. Mahamad, A. B. Salleh, and M. Basri (2007) A new organic solvent tolerant protease from Bacillus pumilus 115b. J. Ind. Microbiol. Biotechnol. 34: 509–517.

    Article  Google Scholar 

  24. Jaouadi, B., B. Abdelmalek, D. Fodil, F. Z. Ferradji, H. Rekik, N. Zaraî, and S. Bejar (2010) Purification and characterization of a thermostable keratinolytic serine alkaline proteinase from Streptomyces sp. Strain AB1 with high stability in organic solvents. Bioresour. Technol. 101: 8361–8369.

    Article  CAS  Google Scholar 

  25. Powers, J. C., J. L. Asgian, O. D. Ekici, and K. E. James (2002) Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem. Rev. 102: 4639–4750.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Jung Wee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, JB., Jang, EJ., Charalampopoulos, D. et al. Purification and Characterization of Microbial Protease Produced Extracellularly from Bacillus subtilis FBL-1. Biotechnol Bioproc E 23, 176–182 (2018). https://doi.org/10.1007/s12257-017-0495-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0495-3

Keywords

Navigation