Skip to main content
Log in

Biological characterization of epigallocatechin gallate complex with different steviol glucosides

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Steviol glucosides (SGs) such as rubusoside (Ru), stevioside (Ste), rebaudioside A (RebA) and stevioside glucosides (SG) are herbal tea sweeteners that enhance the solubility and stability of a number of pharmaceutically important compounds. The complex of epigallocatechin gallate (EGCG) with 10% (w/v) each Ru, Ste, RebA or SG enhanced the water solubility of EGCG over 15 times to 345, 312, 341, or 320 mg/mL, respectively. The 2,2-diphenyl-1-picrylhydrazyl radical scavenging (SC50) activities of EGCG, EGCG-Ru, EGCG-Ste, EGCG-RebA, and EGCG-SG in water were 5.88, 6.03, 6.52, 4.89, and 4.23 μg/mL, respectively. EGCGs complexed with different SGs maintained inhibitory activities against human intestinal maltase, human pancreatic α-amylase, and the growth of Streptococcus mutans, Helicobacter pylori, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, and Clostridium difficile. In glucose tolerance test using C57BL/6 mice, plasma glucose levels in mice treated with EGCG or EGCG-Ste complex were decreased by 9.34%, which was 31.08% lower than those treated with maltose. The efficient and cost-effective EGCG-SGs production method might be applicable to produce water soluble bioactive nutraceuticals in large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zaveri, N. T. (2006) Green tea and its polyphenolic catechins: Medicinal uses in cancer and noncancer applications. Life Sci. 78: 2073–2080.

    Article  CAS  Google Scholar 

  2. Smith, A. J., P. Kavuru, K. K. Arora, S. Kesani, J. Tan, M. J. Zaworotko, and R. D. Shytle (2013) Crystal engineering of green tea epigallocatechin-3-gallate (EGCg) cocrystals and pharmacokinetic modulation in rats. Mol. Pharm. 10: 2948–2961.

    Article  CAS  Google Scholar 

  3. Moon, Y. H., J. H. Lee, J. S. Ahn, S. H. Nam, D. K. Oh, D. H. Park, H. J. Chung, S. Kang, D. F. Day, and D. Kim (2006) Synthesis, structure analyses, and characterization of novel epigallocatechin gallate (EGCG) glycosides using the glucansucrase from Leuconostoc mesenteroides B-1299CB. J. Agric. Food Chem. 54: 1230–1237.

    Article  CAS  Google Scholar 

  4. Su, Y. L., L. K. Leung, Y. Huang, and Z. Y. Chen (2003) Stability of tea theaflavins and catechins. Food Chem. 83: 189–195.

    Article  CAS  Google Scholar 

  5. Forester, S. C. and J. D. Lambert (2014) Synergistic inhibition of lung cancer cell lines by (-)-epigallocatechin-3-gallate in combination with clinically used nitrocatechol inhibitors of catechol-O-methyltransferase. Carcinogen. 35: 365–372.

    Article  CAS  Google Scholar 

  6. Nguyen, T. T. H., S.-H. Jung, S. Lee, H.-J. Ryu, H.-K. Kang, Y.-H. Moon, Y.-M. Kim, A. Kimura, and D. Kim (2012) Inhibitory effects of epigallocatechin gallate and its glucoside on the human intestinal maltase inhibition. Biotechnol. Bioproc. Eng. 17: 966–971.

    Article  CAS  Google Scholar 

  7. Chow, H. H. S., I. A. Hakim, D. R. Vining, J. A. Crowel, J. Ranger-Moore, W. M. Chew, C. A. Celaya, S. R. Rodney, Y. Hara, and D. S. Alberts (2005) Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clin. Cancer Res. 11: 4627–4633.

    Article  CAS  Google Scholar 

  8. Valcic, S., J. A. Burr, B. N. Timmermann, and D. C. Liebler (2000) Antioxidant chemistry of green tea catechins. New oxidation products of (-)-epigallocatechin gallate and (-)-epigallocatechin from their reactions with peroxyl radicals. Chem. Res. Toxicol. 13: 801–810.

    Article  CAS  Google Scholar 

  9. Wang, R., W. B. Zhou, and X. H. Jiang (2008) Reaction kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range. J. Agric. Food Chem. 56: 2694–2701.

    Article  CAS  Google Scholar 

  10. Zhu, M., Y. Chen, and R. C. Li (2000) Oral absorption and bioavailability of tea catechins. Planta Med. 66: 444–447.

    Article  CAS  Google Scholar 

  11. Smith, A., B. Giunta, P. C. Bickford, M. Fountain, J. Tan, and R. D. Shytle (2010) Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease. Int. J. Pharm. 389: 207–212.

    Article  CAS  Google Scholar 

  12. Dube, A., J. A. Nicolazzo, and I. Larson (2011) Chitosan nanoparticles enhance the plasma exposure of (-)-epigallocatechin gallate in mice through an enhancement in intestinal stability. Eur. J. Pharm. Sci. 44: 422–426.

    Article  CAS  Google Scholar 

  13. Nguyen, T. T., S. J. Jung, H. K. Kang, Y. M. Kim, Y. H. Moon, M. Kim, and D. Kim (2014) Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide. Enz. Microb. Technol. 64–65: 38–43.

    Article  Google Scholar 

  14. Kroyer, G. (2010) Stevioside and Stevia-sweetener in food: Application, stability and interaction with food ingredients. J. Verbrauch. Lebensm. 5: 225–229.

    Article  CAS  Google Scholar 

  15. Nguyen, T. T., J. Si, C. Kang, B. Chung, D. Chung, and D. Kim (2017) Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides. Food Chem. 214: 366–373.

    Article  CAS  Google Scholar 

  16. Lee, S. J., D. G. Lee, S. H. Park, M. Kim, C. S. Kong, Y. Y. Kim, and S. H. Lee (2015) Comparison of biological activities in Sargassum siliquanstrum fermented by isolated lactic acid bacteria. Biotechnol. Bioproc. Eng. 20: 341–348.

    Article  CAS  Google Scholar 

  17. Charoensapyanan, R., P. Rudeekulthamrong, and J. Kaulpiboon (2016) Enzymatic synthesis of propyl-alpha-glycosidases ad their application as emulsifying and antibacterial agents. Biotechnol. Bioproc. Eng. 21: 389–401.

    Article  CAS  Google Scholar 

  18. Zhang, X., J. Wang, J. M. Hu, Y. W. Huang, X. Y. Wu, C. T. Zi, X. J. Wang, and J. Sheng (2016) Synthesis and biological testing of novel glucosylated epigallocatechin gallate (EGCG) derivatives. Molecules 21: E620.

    Article  Google Scholar 

  19. Gamboa, F. and M. Chaves (2012) Antimicrobial potential of extracts from Stevia rebaudiana leaves against bacteria of importance in dental caries. Acta Odontol. Latinoam. 25: 171–175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doman Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T.H., Kim, N.M., Yeom, SC. et al. Biological characterization of epigallocatechin gallate complex with different steviol glucosides. Biotechnol Bioproc E 22, 512–517 (2017). https://doi.org/10.1007/s12257-017-0286-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0286-x

Keywords

Navigation