Skip to main content
Log in

Biodegradation of toxic organic compounds using a newly isolated Bacillus sp. CYR2

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to isolate a new bacterium and investigate its ability for degradation of various toxic organic compounds. Based on 16S rRNA gene sequence and phylogenetic analysis, the isolated strain was identified as Bacillus sp. CYR2. Degradation of various toxic compounds and growth of CYR2 strain were evaluated with 2 and 4% inoculum sizes. All the experiments were conducted for 6 days, flasks were incubated at 30oC under 180 rpm. Among the 2 and 4% inoculum sizes, bacteria showed highest growth and toxic compounds degradation at 4% inoculum size. Especially, compared to 2% inoculum size, growth of the strain CYR2 at 4% inoculum size was increased by 15.1 folds with 4-secondarybutylphenol, 9.1 folds with phenol, and 5.4 folds with 4-tertiary-butylphenol. Strain CYR2 at 4% inoculum size showed highest removal of phenol (84 ± 5%), followed by 4-tertiary-butylphenol (66 ± 3%), 4-secondary-butylphenol (63 ± 5%) and 4-nonylphenol (57 ± 6%). Compared with 2% inoculum size, degradation ability of strain CYR2 with 4% inoculum size was enhanced by 3.45 times with 4-tertiary-octylphenol, and 2.53 times with 4-tertiarybutylphenol. Our results indicated that the newly isolated Bacillus sp. CYR2 can be used for in situ bioremediation of phenol and alkylphenols contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, Y. C., K. Takada, D. B. Choi, T. Toyama, K. Sawada, and S. Kikuchi (2013) Isolation of biphenyl and polychlorinated biphenyl-degrading bacteria and their degradation pathway. Appl. Biochem. Biotechnol. 170: 381–398.

    Article  CAS  Google Scholar 

  2. Harzallah, B., H. Bousseboua, and Y. Jouanneau (2017) Diversity shift in bacterial phenol hydroxylases driven by alkyl-phenols in oil refinery wastewaters. Environ. Sci. Pollut. Res. DOI 10.1007/s11356-017-8950-4.

    Google Scholar 

  3. Das, B., T. K. Mandal, and S. Patra (2016) Biodegradation of phenol by a novel diatom BD1IITG-kinetics and biochemical studies. Intern. J. Environ. Sci. Technol. 13: 529–542.

    Article  CAS  Google Scholar 

  4. Liu, D., J. Liu, M. Guo, H. Xu, S. Zhang, L. Shi, and C. Yao (2016) Occurrence, distribution, and risk assessment of alkylphenols, bisphenol A, and tetrabromobisphenol A in surface water, suspended particulate matter, and sediment in Taihu Lake and its tributaries. Mar. Poll. Bull. 112: 142–150.

    Article  CAS  Google Scholar 

  5. Ros, A., A. Vallejo, M. Olivares, N. Etxebarria, and A. Prieto (2016) Determination of endocrine disrupting compounds in fish liver, brain, and muscle using focused ultrasound solid–liquid extraction and dispersive solid phase extraction as clean-up strategy. Anal. Bioanal. Chem. 408: 5689–5700.

    Article  CAS  Google Scholar 

  6. Belkhamssa, N., J. P. da Costa, C. I. L. Justino, P. S. M. Santos, S. Cardoso, A. C. Duarte, T. R. Santos, and M. Ksibi (2016) Development of an electrochemical biosensor for alkylphenol detection. Talanta 158: 30–34.

    Article  CAS  Google Scholar 

  7. Lofthus, S., I. K. Almas, P. Evans, O. Pelz, and O. G. Brakstad (2016) Biotransformation of potentially persistent alkylphenols in natural seawater. Chemosp. 156: 191–194.

    Article  CAS  Google Scholar 

  8. Jia, Y., S. Hao, Y. L. E. Wong, X. Chen, and T. W. D. Chan (2016) Thermo-responsive polymer tethered metal-organic framework core-shell magnetic microspheres for magnetic solidphase extraction of alkylphenols from environmental water samples. J. Chromatogra A. 1456: 42–48.

    Article  CAS  Google Scholar 

  9. Duan, X. Y., Y. Li, X. Li, D. Zhang, and Y. Gao (2014) Alkylphenols in surface sediments of the Yellow Sea and East China Sea inner shelf: Occurrence, distribution and fate. Chemosp. 107: 265–273.

    Article  CAS  Google Scholar 

  10. Hanioka, N., T. Isobe, S. Ohkawara, T. T. Kagawa, and H. Jinno (2017) Glucuronidation of 4-tert-octylphenol in humans, monkeys, rats, and mice: An in vitro analysis using liver and intestine microsomes. Arch. Toxicol. 91: 1–6.

    Article  Google Scholar 

  11. Takeo M., S. K. Prabu, C. Kitamura, M. Hirai, H. Takahashi, D. Kato, and S. Negoro (2006) Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with mediumlength alkyl chain. J. Biosci. Bioeng. 102: 352–361.

    Article  CAS  Google Scholar 

  12. Patel. V., S. Jain, and D. Madamwar (2012) Naphthalene degradation by bacterial consortium (DV-AL) developed from Alang-Sosiya ship breaking yard, Gujarat, India. Bioresour. Technol. 107: 122–130.

    Article  CAS  Google Scholar 

  13. Duarte, M., A. Nielsen, A. Camarinha-Silva, R. Vilchez-Vargas, T. Bruls, M. L. Wos-Oxley, R. Jauregui, and D. H. Pieper (2017) Functional soil metagenomics: Elucidation of polycyclic aromatic hydrocarbon degradation potential following 12 years of in situ bioremediation. Env. Microbio. DOI: 10.1111/1462-2920.13756.

    Google Scholar 

  14. Martinkosky, L., J. Barkley, G. Sabadell, H. Gough, and S. Davidson (2017) Earthworms (Eisenia fetida) demonstrate potential for use in soil bioremediation by increasing the degradation rates of heavy crude oil hydrocarbons. Sci. Total Env. 580: 734–743.

    Article  CAS  Google Scholar 

  15. Jeon, S., S. Hong, B. Kwon, J. Park, S. J. Song, J. P. Giesy, and J. S. Kim (2017) Assessment of potential biological activities and distributions of endocrine-disrupting chemicals in sediments of the west coast of South Korea. Chemosp. 168: 441–449.

    Article  CAS  Google Scholar 

  16. Lobo, C. C., N. C Bertola, and E. M. Contreras (2013) Stoichiometry and kinetic of the aerobic oxidation of phenolic compounds by activated sludge. Bioresour. Technol. 136: 58–65.

    Article  CAS  Google Scholar 

  17. Patel, V., S. Cheturvedula, and D. Madamwar (2012b) Phenanthrene degradation by Pseudoxanthomonas sp. DMVP2 isolated from hydrocarbon contaminated sediment of Amlakhadi canal, Gujarat, India. J. Haz. Mat. 201: 43–51.

    Article  Google Scholar 

  18. Nuhoglu, A. and B. Yalcin (2005) Modelling of phenol removal in a batch reactor. Proc. Biochem. 40: 1233–1239.

    Article  CAS  Google Scholar 

  19. Chung, T. P., H.Y. Tseng, and R. S. Juang (2003) Mass Transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems. Proc. Biochem. 38: 1497–1507.

    Article  CAS  Google Scholar 

  20. Chang, Y. C., M. Venkateswar Reddy, H. Umemoto, Y. Sato, M. H. Kang, Y. Yajima, and S. Kikuchi (2015) Bio-Augmentation of Cupriavidus sp. CY-1 into 2,4-D contaminated soil: Microbial community analysis by culture dependent and independent techniques. PLoS ONE 10: 1–18.

    Google Scholar 

  21. Hong, S. H., J. S. Kim, J. G. Sim, and E. Y. Lee (2016) Isolation and characterization of the plant growth promoting Rhizobacterium, Arthrobacter scleromae SYE-3 on the Yam growth. KSBB J. 31: 58–65.

    Article  Google Scholar 

  22. Shin, Y. J., C. H. Kang, and J. S. So (2016) Red pigment producing Serratia marcescens isolated from abalone. KSBB J. 31: 214–218.

    Article  Google Scholar 

  23. Toledo, F. L., C. Calvo, B. Rodelas, and J. Gonzalez-Lopez (2006) Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Syst. Appl. Microbiol. 29: 244–252.

    Article  CAS  Google Scholar 

  24. Kuang, Y., Y. Zhou, Z. Chen, M. Megharaj, and R. Naidu (2013) Impact of Fe and Ni/Fe nanoparticles on biodegradation of phenol by the strain Bacillus fusiformis (BFN) at various pH values. Bioresour. Technol. 136: 588–594.

    Article  CAS  Google Scholar 

  25. Fayidh, M. A., S. Kallary, P. A. S. Babu, M. Sivarajan, and M. A. Sukumar (2015) A rapid and miniaturized method for the selection of microbial phenol degraders using colourimetric microtitration. Curr. Microbiol. 6: 898–906.

    Article  Google Scholar 

  26. Devi, M. P., M. V. Reddy, A. Juwarkar, P. N. Sarma, and S. Venkata Mohan (2011) Effect of co-culture and nutrients supplementation on bioremediation of crude petroleum sludge. Clean–Soil, Air, Water 39: 900–907.

    Article  CAS  Google Scholar 

  27. Ogata, Y., T. Toyama, N. Yu, X. Wang, K. Sei, and M. Ike (2013) Occurrence of 4-tert-butylphenol (4-t-BP) biodegradation in an aquatic sample caused by the presence of Spirodela polyrrhiza and isolation of a 4-t-BP-utilizing bacterium. Biodegradat. 24: 191–202.

    Article  CAS  Google Scholar 

  28. Hahn, V., K. Sünwoldt, A. Mikolasch, and F. Schauer (2013) Biotransformation of 4-sec-butylphenol by Gram-positive bacteria of the genera Mycobacterium and Nocardia including modifications on the alkyl chain and the hydroxyl group. Appl. Microbiol. Biotechnol. 97: 8329–8339.

    Article  CAS  Google Scholar 

  29. Wang, Z., Y. Yang, W. Sun, and S. Xie (2014) Biodegradation of nonylphenol by two alphaproteobacterial strains in liquid culture and sediment microcosm. Int. Biodet. Biodeg. 92: 1–5.

    Article  CAS  Google Scholar 

  30. Tuan, N. N., Y. W. Lin, and S. L. Huang (2013) Catabolism of 4-alkylphenols by Acinetobacter sp. OP5: Genetic organization of the oph gene cluster and characterization of alkylcatechol 2, 3-dioxygenase. Bioresour. Technol. 131: 420–428.

    Article  CAS  Google Scholar 

  31. Toyama, T., M. Murashita, K. Kobayashi, S. Kikuchi, K. Sei, Y. Tanaka, M. Ike, and K. Mori (2011) Acceleration of nonylphenol and 4-tert-Octylphenol degradation in sediment by Phragmites australis and associated Rhizosphere bacteria. Environ. Sci. Technol. 45: 6524–6530.

    Article  CAS  Google Scholar 

  32. Chang, Y. C., S. Fuzisawa, M.V. Reddy, H. Kobayashi, E. Yoshida, Y. Yajima, T. Hoshino, and D.B. Choi (2016) Degradation of toxic compounds at low and medium temperature conditions using isolated Fungus. Clean–Soil, Air, Water 44: 992–1000.

    Article  CAS  Google Scholar 

  33. Reddy, M. V., Y. Mawatari, Y. Yajima, C. Seki, T. Hoshino, and Y. C. Chang (2015) Poly-3-hydroxybutyrate (PHB) production from alkylphenols, mono and poly-aromatic hydrocarbons using Bacillus sp. CYR1: A new strategy for wealth from waste. Bioresour. Technol. 192: 711–717.

    Article  Google Scholar 

  34. He, Z., C. Niu, and Z. Lu Z (2014) Individual or synchronous biodegradation of di-n-butyl phthalate and phenol by Rhodococcus ruber strain DP-2. J. Haz. Mat. 273: 104–109.

    Article  CAS  Google Scholar 

  35. Maza-Márquez, P., M. V. Martínez-Toledo, V. González-López, B. Rodelas, B. Juárez-Jiménez, and M. Fenice (2013) Biodegradation of olive washing wastewater pollutants by highly efficient phenol-degrading strains selected from adapted bacterial community. Int. Biodet. Biodeg. 82: 192–198.

    Article  Google Scholar 

  36. Bonfa, M. R. L., M. J. Grossman, F. Piubeli, E. Mellado, and L. R. Durrant (2013) Phenol degradation by halophilic bacteria isolated from hypersaline environments. Biodeg. 24: 699–709.

    Article  CAS  Google Scholar 

  37. Venkateswar Reddy, M., Y. Mawatari, Y. Yajima, C. Seki, T. Hoshino, and Y. C. Chang (2015) Degradation and conversion of toxic compounds into useful bioplastics by Cupriavidus sp. CY-1: Relative expression of the PhaC gene under phenol and nitrogen stress. Green Chem. 17: 4560–4569.

    Article  CAS  Google Scholar 

  38. Qi, J., B. Wang, J. Li, H. Ning, Y. Wang, W. Kong, and L. Shen (2008) Genetic determinants involved in the biodegradation of naphthalene and phenanthrene in Pseudomonas aeruginosa PAO1. Environ. Sci. Pollut. Res. 22: 6743–6749.

    Article  Google Scholar 

  39. Masakorala, K., J. Yao, M. Cai, R. Chandankere, H. Yuan, and H. Chen (2013) Isolation and characterization of a novel phenanthrene (PHE) degrading strain Psuedomonas sp. USTB-RU from petroleum contaminated soil. J. Haz. Mat. 263: 493–500.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to DuBok Choi or Young-Cheol Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, M.V., Yajima, Y., Choi, D. et al. Biodegradation of toxic organic compounds using a newly isolated Bacillus sp. CYR2. Biotechnol Bioproc E 22, 339–346 (2017). https://doi.org/10.1007/s12257-017-0117-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0117-0

Keywords

Navigation