Skip to main content
Log in

Expression of NADH-oxidases enhances ethylene productivity in Saccharomyces cerevisiae expressing the bacterial EFE

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Ethylene is a major petrochemical for which biotechnological production methods are an attractive alternative. Here we use a system based on a bacterial ethylene forming enzyme (EFE) expressed in Saccharomyces cerevisiae. Metabolic modelling performed in a previous study identified re-oxidation of NADH as a factor limiting ethylene production in S. cerevisiae. In line with this, we here found that strains with multicopy plasmid expression of the heterologous oxidases nox and Aox1 led to significantly increased specific ethylene productivity, up 12 and 36%, respectively, compared to the control strain with empty plasmid. However the productivity and yield was only improved in the AOX expressing strain compared to that of the control strain. Both oxidase expressing strains also exhibited increased respiration rates compared to the reference strain, with specific oxygen consumption rates being roughly doubled in both strains. The AOX strain furthermore exhibited a significant increase in the EFE substrate 2-oxoglutarate formation compared to the reference strain, linking an improvement in ethylene production to both increased respiratory capacity and increased substrate availability, thereby corroborating our previous finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, D. O. and S. F. Yang (1979) Ethylene biosynthesis: Identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA. 76: 170–174.

    Article  CAS  Google Scholar 

  2. Yang, S. F. and N. E. Hoffman (1984) Ethylene biosynthesis and its regulation in higher-plants. Annu. Rev. Plant Phys. 35: 155–189.

    Article  CAS  Google Scholar 

  3. Fukuda, H., T. Ogawa, and S. Tanase (1993) Ethylene production by micro-organisms. Adv. Microb. Physiol. 35: 275–306.

    Article  CAS  Google Scholar 

  4. Nagahama, K., T. Ogawa, T. Fujii, and H. Fukuda (1992) Classification of ethylene-producing bacteria in terms of biosynthetic pathways to ethylene. J. Ferment. Bioeng. 73: 1–5.

    Article  CAS  Google Scholar 

  5. Chen, X., Y. Liang, J. Hua, L. Tao, W. Qin, and S. Chen (2010) Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene. Int. J. Biol. Sci. 6: 96–106.

    Article  CAS  Google Scholar 

  6. Eckert, C., W. Xu, W. Xiong, S. Lynch, J. Ungerer, L. Tao, R. Gill, P. C. Maness, and J. Yu (2014) Ethylene-forming enzyme and bioethylene production. Biotechnol. Biofuels 7:33.

    Article  Google Scholar 

  7. Ishihara, K., M. Matsuoka, Y. Inoue, S. Tanase, T. Ogawa, and H. Fukuda (1995) Overexpression and in vitro reconstitution of the ethylene-forming enzyme from Pseudomonas syringae. J. Ferment. Bioeng. 79: 205–211.

    Article  CAS  Google Scholar 

  8. Ishihara, K., M. Matsuoka, T. Ogawa, and H. Fukuda (1996) Ethylene production using a broad-host-range plasmid in Pseudomonas syringae and Pseudomonas putida. J. Ferment. Bioeng. 82: 509–511.

    Article  CAS  Google Scholar 

  9. Sakai, M., T. Ogawa, M. Matsuoka, and H. Fukuda (1997) Photosynthetic conversion of carbon dioxide to ethylene by the recombinant cyanobacterium, Synechococcus sp. PCC 7942, which harbors a gene for the ethylene-forming enzyme of Pseudomonas syringae. J. Ferment. Bioeng. 84: 434–443.

    Article  CAS  Google Scholar 

  10. Tao, L., H. J. Dong, X. Chen, S. F. Chen, and T. H. Wang (2008) Expression of ethylene-forming enzyme (EFE) of Pseudomonas syringae pv. glycinea in Trichoderma viride. Appl. Microbiol. Biot. 80: 573–578.

    Article  CAS  Google Scholar 

  11. Ungerer, J., L. Tao, M. Davis, M. Ghirardi, P. C. Maness, and J. P. Yu (2012) Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energ. Environ. Sci. 5: 8998–9006.

    Article  CAS  Google Scholar 

  12. Pirkov, I., E. Albers, J. Norbeck, and C. Larsson (2008) Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae. Metabol. Eng. 10: 276–280.

    Article  CAS  Google Scholar 

  13. Johansson, N., K. O. Persson, P. Quehl, J. Norbeck, and C. Larsson (2014) Ethylene production in relation to nitrogen metabolism in Saccharomyces cerevisiae. FEMS Yeast Res. 14: 1110–1118.

    CAS  Google Scholar 

  14. Johansson, N., P. Quehl, J. Norbeck, and C. Larsson (2013) Identification of factors for improved ethylene production via the ethylene forming enzyme in chemostat cultures of Saccharomyces cerevisiae. Microbial. Cell Factor. 12:89.

    Article  Google Scholar 

  15. Larsson, C., J. L. Snoep, J. Norbeck, and E. Albers (2011) Flux balance analysis for ethylene formation in genetically engineered Saccharomyces cerevisiae. IET Syst. Biol. 5: 245–251.

    Article  CAS  Google Scholar 

  16. Vemuri, G. N., M. A. Eiteman, J. E. McEwen, L. Olsson, and J. Nielsen (2007) Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 104: 2402–2407.

    Article  CAS  Google Scholar 

  17. Verduyn, C., E. Postma, W. A. Scheffers, and J. P. Van Dijken (1992) Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast 8: 501–517.

    Article  CAS  Google Scholar 

  18. Dynesen, J., H. P. Smits, L. Olsson, and J. Nielsen (1998) Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose. Appl. Microbiol. Biotechnol. 50: 579–582.

    Article  CAS  Google Scholar 

  19. Auzat, I., S. Chapuy-Regaud, G. Le Bras, D. Dos Santos, A. D. Ogunniyi, I. Le Thomas, J. R. Garel, J. C. Paton, and M. C. Trombe (1999) The NADH oxidase of Streptococcus pneumoniae: Its involvement in competence and virulence. Mol. Microbiol. 34: 1018–1028.

    Article  CAS  Google Scholar 

  20. Akhter, S., H. C. McDade, J. M. Gorlach, G. Heinrich, G. M. Cox, and J. R. Perfect (2003) Role of alternative oxidase gene in pathogenesis of Cryptococcus neoformans. Infect. Immun. 71: 5794–5802.

    Article  CAS  Google Scholar 

  21. Johnson, C. H., J. T. Prigge, A. D. Warren, and J. E. McEwen (2003) Characterization of an alternative oxidase activity of Histoplasma capsulatum. Yeast 20: 381–388.

    Article  CAS  Google Scholar 

  22. Luttik, M. A., K. M. Overkamp, P. Kotter, S. de Vries, J. P. van Dijken, and J. T. Pronk (1998) The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J. Biol. Chem. 273: 24529–24534.

    Article  CAS  Google Scholar 

  23. Small, W. C. and L. McAlister-Henn (1998) Identification of a cytosolically directed NADH dehydrogenase in mitochondria of Saccharomyces cerevisiae. J. Bacteriol. 180: 4051–4055.

    CAS  Google Scholar 

  24. Larsson, C., I. L. Pahlman, R. Ansell, M. Rigoulet, L. Adler, and L. Gustafsson (1998) The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae. Yeast 14: 347–357.

    Article  CAS  Google Scholar 

  25. Pahlman, I. L., L. Gustafsson, M. Rigoulet, and C. Larsson (2001) Cytosolic redox metabolism in aerobic chemostat cultures of Saccharomyces cerevisiae. Yeast 18: 611–620.

    Article  CAS  Google Scholar 

  26. Rigoulet, M., H. Aguilaniu, N. Averet, O. Bunoust, N. Camougrand, X. Grandier-Vazeille, C. Larsson, I. L. Pahlman, S. Manon, and L. Gustafsson (2004) Organization and regulation of the cytosolic NADH metabolism in the yeast Saccharomyces cerevisiae. Mol. Cell Biochem. 256-257: 73–81.

    Article  Google Scholar 

  27. Entian, K. D. and P. Kötter (2007) Yeast genetic strain and plasmid collections. pp. 629–666. In: I. Stansfield, and M. Stark (eds.). Methods in Microbiology. Elsevier.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joakim Norbeck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johansson, N., Persson, K.O., Norbeck, J. et al. Expression of NADH-oxidases enhances ethylene productivity in Saccharomyces cerevisiae expressing the bacterial EFE. Biotechnol Bioproc E 22, 195–199 (2017). https://doi.org/10.1007/s12257-016-0602-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0602-x

Keywords

Navigation