Skip to main content
Log in

Improving carbon and energy distribution by coupling growth and medium chain length polyhydroxyalkanoate production from fatty acids by Pseudomonas putida KT2440

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The production of medium chain length polyhydroxyalkanoates by Pseudomonas putida KT2440 from fatty acids leads to the loss of a large proportion of carbon. We studied the possibility of a shift of potentially available energy and carbon towards monitored residual growth during the production phase. A Fed-Batch culture achieving 125.6 g/L of total biomass containing 54.4% (g/g) of medium chain length polyhydroxyalkanoates was carried out leading to an overall experimental carbon yield of 0.7 Cmole/Cmole. The analysis of modeling fluxes deduced from experimental data indicated how carbon and reduced cofactors (NADH and FADH2) were managed to conclude that part of the carbon and reduced cofactors made available by polymer production were used in anabolic pathways. The strategy which consisted in coupled growth and medium chain length polyhydroxyalkanoate production enhanced the global yields compared to growth followed by a production phase. The understanding of carbon and energy fluxes distribution allowed deducing optimized culture strategy to perform the highest reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinbuchel, A. and H. E. Valentin (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 128: 219–228.

    Article  Google Scholar 

  2. Agnew, D. E. and B. F. Pfleger (2013) Synthetic biology strategies for synthesizing polyhydroxyalkanoates from unrelated carbon sources. Chem. Eng. Sci. 103: 58–67.

    Article  CAS  Google Scholar 

  3. Lee, E. Y. and C. T. Choi (1997) Biosynthesis and biotechnological production of degradable polyhydroxyalkanoic acid. Biotechnol. Bioproc. Eng. 2: 1–10.

    Article  Google Scholar 

  4. Sang Yup Lee (1996) High cell density cultivation of Pseudomonas oleovorans for the production of Poly(3-Hydroxyalkanoates). Biotechnol. Bioproc. Eng. 1: 51–53.

    Article  Google Scholar 

  5. Abe, H., N. Ishii, S. Sato, and T. Tsuge (2012) Thermal properties and crystallization behaviors of medium-chain-length poly(3-hydroxyalkanoate)s. Polymer. 53: 3026–3034.

    Article  CAS  Google Scholar 

  6. Koller, M., A. Salerno, M. Dias, and A. Reiterer (2010) Modern biotechnological polymer synthesis: A review. Food Technol. Biotechnol. 48: 255–269.

    CAS  Google Scholar 

  7. Jiang, G., D.J. Hill, M. Kovalczik, B. Johnston, G. Adamus, V. Irorere, and I. Radecka (2016) Carbon sources for polyhydroxyalkanoates and an integrated biorefinery. Int. J. Mol. Sci. 17: 1157.

    Article  Google Scholar 

  8. Liu, C. -C., L. -L. Zhang, B. Chen, and H. Yang (2016) Recent strategies for efficient production ofpolyhydroxyalkanaotes by micro-organisms. Lett. Appl. Microbiol. 62: 9–15.

    Article  CAS  Google Scholar 

  9. Hazenberg, W. and B. Witholt (1997) Efficient production of medium-chain-length poly(3-hydroxyalkanoates) from octane by Pseudomonas oleovorans: Economic considerations. Appl. Microbiol. Biot. 48: 588–596.

    Article  CAS  Google Scholar 

  10. Witholt, B. and B. Kessler (1999) Perspectives of medium chain length a versatile set of bacterial bioplastics. Curr. Opin. Biotech. 10: 279–285.

    Article  CAS  Google Scholar 

  11. Steinbüchel, A. and T. Lütke-Eversloh (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem. Eng. J. 16: 81–96.

    Article  Google Scholar 

  12. Kellerhals, M. B., B. Kessler, B. Witholt, A. Tchouboukov, and H. Brandl (2000) Renewable long-chain fatty acids for production of biodegradable medium-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot plant scales. Macromol. 33: 4690–4698.

    Article  CAS  Google Scholar 

  13. Grousseau, E., E. Blanchet, S. Deleris, M. G. E. Albuquerque, E. Paul, and J. L. Uribelarrea (2013) Impact of sustaining a controlled residual growth on polyhydroxybutyrate yield and production kinetics in Cupriavidus necator. Bioresour. Technol. 148: 30–38.

    Article  CAS  Google Scholar 

  14. Brandl, H., R. A. Gross, R. W. Lenz, and R. C. Fuller (1988) Pseudomonas oleovorans as a source of poly(beta-Hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl. Microbiol. Biot. 54: 1977–1982.

    CAS  Google Scholar 

  15. Van Duuren, J. B. J. H., J. Puchalka, A. E. Mars, R. Bücker, G. Eggink, C. Wittmann, and V. A. P. M. dos Santos (2013) Reconciling in vivo and in silico key biological parameters of Pseudomonas putida KT2440 during growth on glucose under carbonlimited condition. BMC Biotechnol. 13: 93.

    Article  Google Scholar 

  16. Blank, L. M., G. Ionidis, B. E. Ebert, B. Bühler, and A. Schmid (2008) Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J. 275: 5173–5190.

    Article  CAS  Google Scholar 

  17. Chavarra, M., R. J. Kleijn, U. Sauer, K. Pflüger-Grau, and V. de Lorenzo (2012) Regulatory tasks of the Phosphoenolpyruvatephosphotransferase system of Pseudomonas putida in central carbon metabolism. mBio. 3: 2.

    Google Scholar 

  18. Escapa, I. F., J. L. Garcia, B. Bühler, L. M. Blank, and M. A. Prieto (2012) The polyhydroxyalkanoate metabolism controls carbon and energy spillage in Pseudomonas putida. Environ. Microbiol. 14: 1049–1063.

    Article  CAS  Google Scholar 

  19. Latour, X. and P. Lemanceau (1998) Métabolisme carbon et énergétique des Pseudomonas spp fluorescents saprophytes oxydase positive. Agronomie. 17: 427–443.

    Article  Google Scholar 

  20. Schulz, H. (1991) Beta oxidation of fatty acids. BBA -Lipid. Lipid. Met. 1081: 109–120.

    Article  CAS  Google Scholar 

  21. Prieto, A., I. F. Escapa, V. Martinez, N. Dinjaski, C. Herencias, F. de la Pena, N. Tarazona, and O. Revelles (2016) A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida. Environ. Microbiol. 18: 341–357.

    Article  CAS  Google Scholar 

  22. Haywood, G. W., A. J. Anderson, and E. A. Dawes (1989) The importance of Phb-Synthase substrate-specificity in Polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol. Lett. 60: 245.

    Article  Google Scholar 

  23. Sudesh, K., H. Abe, and Y. Doi (2000) Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 25: 1503–1555.

    Article  CAS  Google Scholar 

  24. Weusthuis, R. A., G. N. M. Huijberts, and G. Eggink (1996) Production of MCL-Poly(3-hydroxyalknoates). International Symposium on Bacterial Polyhydroxyalkanoates. pp. 102–109. In: Eggink, G., A. Steinbüchel, Y. Poirier and B. Witholt (eds.). NRC Research Press, Ottawo, Canada.

    Google Scholar 

  25. Westerhoff, H. V., J. S. Lolkema, R. Otto, and K. J. Hellingwerf (1982) Thermodynamics of growth, Non-equilibrium thermodynamics of bacterial growth, The phenomenological and the mosaic approach. Biochim. Biophys. Acta 683: 181–220.

    Article  CAS  Google Scholar 

  26. Khuwijitjaru, P., Y. Kimura, R. Matsuno, and S. Adachi (2004) Solubility of oleic and linoleic acids in subcritical water. Food Sci. Technol. Res. 10: 261–263.

    Article  CAS  Google Scholar 

  27. Lee, S. Y., H. H. Wong, J. I. Choi, S. H. Lee, S. C. Lee, and C. S. Han (2000) Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol. Bioeng. 68: 466–470.

    Article  CAS  Google Scholar 

  28. Aragao, G. (1996) Production de polyhydroxyalcanoates par Alcaligenes eutrophus: caractérisation cinétique et contribution l’optimisation de la mise en oeuvre des cultures. Ph. D. Thesis. Institut National des Sciences Appliquées, Toulouse, France.

    Google Scholar 

  29. Grousseau, E. (2012) Potentialités de production depolyhydroxyalcanoates chez Cupriavidus necator sur substrats de type acides gras volatils: études cinétiques et métaboliques. Ph.D. Thesis. Institut National des Sciences Appliquées, Toulouse, France.

    Google Scholar 

  30. De Eugenio, L. I., I. F. Escapa, V. Morales, N. Dinjaski, B. Galán, J. L. García, and M. A. Prieto (2010) The turnover of mediumchain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ. Microbiol. 12: 207–221.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Andin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andin, N., Longieras, A., Veronese, T. et al. Improving carbon and energy distribution by coupling growth and medium chain length polyhydroxyalkanoate production from fatty acids by Pseudomonas putida KT2440. Biotechnol Bioproc E 22, 308–318 (2017). https://doi.org/10.1007/s12257-016-0449-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0449-1

Keywords

Navigation