Skip to main content
Log in

Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this work, we report the preparation of bacterial cellulose (BC)-chitosan composite hydrogel beads by co-dissolution of BC and chitosan in 1-ethyl-3-methylimidazolium acetate and subsequent reconstitution with distilled water. The BC-chitosan hydrogel beads were used as enzyme supports for immobilizing Candida rugosa lipase by physical adsorption and covalent cross-linking. BC-chitosan hydrogel beads immobilized lipase more efficiently than microcrystalline cellulose (MCC)-chitosan hydrogel beads. The amount of protein adsorbed onto BCchitosan beads was 3.9 times higher than that adsorbed onto MCC-chitosan beads, and the catalytic activity of lipase was 1.9 times higher on the BC-chitosan beads. The lipase showed the highest thermal and operational stability when covalently cross-linked on BC-chitosan hydrogel beads. The half-life time of the lipase cross-linked on BC-chitosan bead at 60°C was 22.7 times higher than that of free lipase. Owing to their inherent biocompatibility and biodegradability, the BC-chitosan composite hydrogel beads described here could be used to immobilize proteins for various biomedical, environmental, and biocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iguchi, M., S. Yamanaka, and A. Budhiono (2000) Bacterial cellulose-a masterpiece of nature's arts. J. Mater. Sci. 35: 261–270.

    Article  CAS  Google Scholar 

  2. Kim, Y. H., S. Park, K. Won, H. J. Kim, and S. H. Lee (2013) Bacterial cellulose-carbon nanotube composite as a biocompatible electrode for the direct electron transfer of glucose oxidase. J. Chem. Technol. Biotechnol. 88: 1067–1070.

    Article  CAS  Google Scholar 

  3. Akduman, B., M. Uygun, E. P. Coban, D. A. Uygun, H. Biyik, and S. Akgol (2013) Reversible immobilization of urease by using bacterial cellulose nanofibers. Appl. Biochem. Biotechnol. 171: 2285–2294.

    Article  CAS  Google Scholar 

  4. Frazao, C. J. R., N. H. C. Silva, C. S. R. Freire, A. J. D. Silvestre, A. M. R. B. Xavier, and A. P. M. Tavares (2014) Bacterial cellulose as carrier for immobilization of laccase: Optimization and characterization. Eng. Life Sci. 14: 500–508.

    Article  CAS  Google Scholar 

  5. Yao, W. Y., X. Wu, J. Zhu, B. Sun, and C. Miller (2013) In vitro enzymatic conversion of ?-aminobutyric acid immobilization of glutamate decarboxylase with bacterial cellulose membrane and non-linear model establishment. Enz. Microb. Technol. 52: 258–264.

    Article  CAS  Google Scholar 

  6. Shah, N., M. Ul-Islam, W. A. Khattak, and J. K. Park (2013) Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydr. Polym. 98: 1585–1598.

    Article  CAS  Google Scholar 

  7. Schlufter, K., H. P. Schmauder, S. Dorn, and T. Heinze (2006) Efficient homogeneous chemical modification of bacterial cellulose in the ionic liquid 1-N-butyl-3-methylimidazolium chloride. Macromol. Rapid Commun. 27: 1670–1676.

    Article  CAS  Google Scholar 

  8. Okushita, K., K. E. Chikayama, and J. Kikuchi (2012) Solubilization mechanism and characterization of the structural change of bacterial cellulose in regenerated states through ionic liquid treatment. Biomacromol. 13: 1323–1330.

    Article  CAS  Google Scholar 

  9. Sun, X., B. Peng, Y. Ji, J. Chen, and D. Li (2009) Chitosan(chitin)/ cellulose composite biosorbents prepared using ionic liquid for heavy metal ions adsorption. AIChE J. 5: 2062–2069.

    Article  Google Scholar 

  10. Park, T. J., Y. J. Jung, S. W. Choi, H. Park, H. Kim, E. Kim, S. H. Lee, and J. H. Kim (2011) Native chitosan/cellulose composite fibers from an ionic liquid via electrospinning. Macromol. Res. 19: 213–215.

    Article  CAS  Google Scholar 

  11. Stefanescu, C., H. W. Daly, and I. I. Negulescu (2012) Biocomposite films prepared from ionic liquid solutions of chitosan and cellulose. Carbohydr. Polym. 87: 435–443.

    Article  CAS  Google Scholar 

  12. Kim, M. H., S. An, K. Won, H. J. Kim, and S. H. Lee (2012) Entrapment of enzymes into cellulose-biopolymer composite hydrogel beads using biocompatible ionic liquid. J. Mol. Catal. B: Enz. 75: 68–72.

    Article  CAS  Google Scholar 

  13. Peng, S., H. C. Meng, L. Zhou, and J. Chang (2014) Synthesis of novel magnetic cellulose-chitosan composite microspheres and their application in laccase immobilization. J. Nanosci. Nanotechnol. 14: 7010–7014.

    Article  CAS  Google Scholar 

  14. Shanshan, G., W. Jianqing, and J. Zhengwei (2012) Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohydr. Polym. 87: 1020–1025.

    Article  Google Scholar 

  15. Zhang, D. H., L. X. Yuwen, C. Li, and Y. Q. Li (2012) Effect of poly(vinyl acetate-acrylamide) microspheres properties and steric hindrance on the immobilization of Candida rugosa lipase. Bioresour. Technol. 124: 233–236.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hyun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.J., Jin, J.N., Kan, E. et al. Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol Bioproc E 22, 89–94 (2017). https://doi.org/10.1007/s12257-016-0381-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0381-4

Keywords

Navigation