Skip to main content
Log in

The role of extracellular polymeric substances in reducing copper inhibition to nitrification in activated sludge

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study presents the role of extracellular polymeric substances (EPS) in reducing the inhibitory effects of copper towards nitrifying activated sludge. EPS could ameliorate copper toxicity in activated sludge by binding metal ions. A series of copper inhibition experiments were conducted with activated sludge taken from laboratoryscale sequencing batch reactor (SBR) systems operated under different feast-famine cycles, which provided the different conditions to the EPS-producing heterotrophic populations. The toxicity of copper to both nitrifiers and heterotrophs decreased with increasing the feast-famine period. Average EPS contents were substantially higher in SBR sludge with longer feast-famine periods indicating that the decrease in the toxicity of copper at a longer feastfamine period was attributed to the presence of higher amounts of EPS. Comparison of the responses of nitrifiers and heterotrophs to free copper suggests that nitrifiers were no more sensitive to copper than heterotrophs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Madoni, P., D. Davoli, and L. Guglielmi (1999) Response of sOUR and AUR to heavy metal contamination in activated sludge. Water Res. 33: 2459–2464.

    Article  CAS  Google Scholar 

  2. Kelly, R. T., I. D. S. Henriques, and N. G. Love (2004) Chemical inhibition of nitrification in activated sludge. Biotechnol. Bioeng. 85: 683–694.

    Article  CAS  Google Scholar 

  3. You, S. J., Y. P. Tasi, and R. Y. Huang (2009) Effect of heavy metals on nitrification performance in different activated sludge process. J. Hazard. Mater. 165: 987–994.

    Article  CAS  Google Scholar 

  4. Lee, Y. W., S. K. Ong, and C. Sato (1997) Effects of heavy metals on nitrifying bacteria. Wat. Sci. Tech. 36: 69–74.

    Article  CAS  Google Scholar 

  5. Hu, Z., K. Chandran, D. Grasso, and B. F. Smets (2004) Comparison of nitrification inhibition by metals in batch and continuous flow reactors. Water Res. 38: 3949–3959.

    Article  CAS  Google Scholar 

  6. Burnat, M., E. Diestra, I. Esteve, and A. Sole (2009) In situ determination of the effects of lead and copper on cyanobacterial populations in microcosms. PLoS One 4: e6204.

    Article  Google Scholar 

  7. Sun F. L., L. L. Fan, and G. J. Xie (2016) Effect of copper on the performance and bacterial communities of activated sludge using Illumina MiSeq platorms. Chemosphere 156: 212–219.

    Article  CAS  Google Scholar 

  8. Kim, K.T., I. S. Kim, S. H. Hwang, and S. D. Kim (2006) Estimating the combined effects of copper and phenol to nitrifying bacteria in wastewater treatment plants. Water Res. 40: 561–568.

    Article  CAS  Google Scholar 

  9. Zhou, X. H., T. Yu, H. C. Shi, and H. M. Shi (2011) Temporal and spatial inhibitory effects of zinc and copper on wastewater biofilms from oxygen concentration profiles determined by microelectrodes. Water Res. 45: 953–959.

    Article  CAS  Google Scholar 

  10. Ochoa-Herrera, V., G. León, Q. Banihani, J. A. Field, and R. Sierra-Alvarez (2011) Toxicity of copper (II) ions to microorganisms in biological wastewater treatment systems. Sci. Total Environ. 412-413: 380–385.

    Article  CAS  Google Scholar 

  11. Ouyang, F., H. Zhai, M. Ji, H. Zhang, and Z. Dong (2016) Physiological and transcriptional responses of nitrifying bacteria exposed to copper in activated sludge. J. Haz. Mat. 301: 172–178.

    Article  CAS  Google Scholar 

  12. Rudd, T., R. M. Sterritt, and J. N. Lester (1984) Complexation of heavy metals by extracellular polymers in the activated sludge process. J. Water Pollut. Cont. Fed. 56: 1260–1268.

    CAS  Google Scholar 

  13. Sheng, G. P., J. Xu, H. W. Lou, W. W. Li, W. H. Li, H. Q. Yu, Z. Xie, S. Q. Wei, and F. C. Hu (2013) Thermodynamic analysis on the binding of heavy metals onto extracellular polymeric substances (EPS) of activated sludge. Water Res. 47: 607–614.

    Article  CAS  Google Scholar 

  14. Principi, P., F. Villa, M. Bernasconi, and E. Zanardini (2006) Metal toxicity in municipal wastewater activated sludge investigated by multivariate analysis and in situ hybridization. Water Res. 40: 99–106.

    Article  CAS  Google Scholar 

  15. Lawson, P. S., R. M. Sterritt, and J. N Lester (1984) Adsorption and complexation mechanisms of heavy metal uptake in activated sludge. J. Chem. Tech. Biotechnol. 34: 253–262.

    Article  Google Scholar 

  16. Norberg, A. B. and H. Persson (1984) Accumulation of heavy-metal ions by Zoogloea ramigera. Biotechnol. Bioeng. 26: 239–246.

    Article  CAS  Google Scholar 

  17. Su, M. C., D. K. Cha, and P. R. Anderson (1995) Influence of selector technology on heavy metal removal by activated sludge: Secondary effects of selector technology. Water Res. 29: 971–976.

    Article  CAS  Google Scholar 

  18. Comte, S., G. Guibaud, and M. Baudu (2006) Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: Soluble or bound. Proc. Biochem. 41: 815–823.

    Article  CAS  Google Scholar 

  19. Yuncu, B., F. D. Sanin, and U. Yetis (2006) An investigation of heavy metal biosorption in relation to C/N ratio of activated sludge. J. Hazard. Mater. 137: 990–997.

    Article  CAS  Google Scholar 

  20. Larsen, P., J. L. Nielson, D. Otzen, and P. H. Nielsen (2008) Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge. Appl. Environ. Microb. 74: 1517–1526.

    Article  CAS  Google Scholar 

  21. Sag, Y. and T. Kutsal (1995) Biosorption of heavy metals by Zoogloea ramigera: use of adsorption isotherm and a comparison of biosorption characteristics. Chem. Eng. J. 60: 181–188.

    CAS  Google Scholar 

  22. Pereira, S., E. Micheletti, A. Zille, A. Santos, P. Moradas-Ferreira, P. Tamagnini, and R. De Philippis (2011) Using extracellular polymeric substances (EPS) producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell? Microbiol. 157: 451–458.

    Article  CAS  Google Scholar 

  23. Nouha, K., R. S. Kumar, and R. D. Tyagi (2016) Heavy metals removal from wastewater using extracellular polymeric substances produced by Cloacibacterium normanense in wastewater sludge supplemented with crude glycerol and study of extracellular polymeric substances extraction by different methods. Bioresour. Technol. 212: 120–129.

    Article  CAS  Google Scholar 

  24. Friedman, B. A. and P. R. Dugan (1968) Identification of Zoogloea species and the relationship to Zoogloea matrix and floc formation. J. Biotechnol. 95: 1903–1909.

    CAS  Google Scholar 

  25. Cha, D. K. (1990) Process control factors influencing Nocardia population in activated sludge. Ph. D. Dissertation. University of California, Berkeley, USA.

    Google Scholar 

  26. van Niekerk, A. M., D. Jenkins, and M. G. Richard (1987) The competitive growth of Zoogloea ramigera and Type 021N in activated sludge and pure culture–a model for low F:M bulking. J. Water. Pollut. Cont. Fed. 59: 262–273.

    Google Scholar 

  27. Ozdemir, G., T. Ozturk, N. Ceyhan, R. Isler, and T. Cosar (2003) Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresour. Technol. 90: 71–74.

    Article  CAS  Google Scholar 

  28. Zhang, D., J. Wang, and X. Pan (2006) Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. J. Hazard. Mater. 138: 589–593.

    Article  CAS  Google Scholar 

  29. Brown, M. J. and J. N. Lester (1980) Comparison of bacterial extracellular polymer extraction methods. Appl. Environ. Microb. 40: 179–185.

    CAS  Google Scholar 

  30. American Public Health Association (2005) Standard Methods for the Examination of Water and Wastewater. 21st ed., Washington DC, USA.

    Google Scholar 

  31. Wang, Z., L. Liu, J. Yao, and W. Cai (2006) Effects of extracellular polymeric substances on aerobic granulation in sequencing batch reactors. Chemosphere 63: 1728–1735.

    Article  CAS  Google Scholar 

  32. Ni, B. J., B. E. Rittmann, F. Fang, J. Xu, and H. Q. Yu (2010) Long-term formation of microbial products in a sequencing batch reactor. Water Res. 44: 3787–3796.

    Article  CAS  Google Scholar 

  33. Liu, Y., M. C. Lam, and H. H. P. Fang (2001) Adsorption of heavy metals by EPS of activated sludge. Water Sci. Technol. 43, 6, 59–66.

    CAS  Google Scholar 

  34. Ma, H., S. D. Kim, D. K. Cha, and H. E. Allen (1999) Effect of kinetics of complexation by humic acid on toxicity of copper to Ceriodaphnia dubia. Environ. Toxicol. Chem. 18: 828–837.

    Article  CAS  Google Scholar 

  35. Kim, S. D., H. Ma, H. E. Allen, and D. K. Cha (1999) Influence of dissolved organic matter on the toxicity of copper to Ceriodaphnia dubia: Effect of complexation kinetics. Environ. Toxicol. Chem. 18: 2433–2437.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Woo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J.S., Maeng, M., Lee, K. et al. The role of extracellular polymeric substances in reducing copper inhibition to nitrification in activated sludge. Biotechnol Bioproc E 21, 683–688 (2016). https://doi.org/10.1007/s12257-016-0329-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0329-8

Keywords

Navigation