Skip to main content
Log in

Structural characterization and temperature-dependent production of C17-fengycin B derived from Bacillus amyloliquefaciens subsp. plantarum BC32-1

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cyclic lipopeptides were produced by Bacillus amyloliquefaciens subsp. plantarum strain BC32-1 that was isolated from yellow loess soil in the Jeonnam province of South Korea. Several lipopeptides were isolated from the bacteria using organic solvent extraction and reverse-phase high-performance liquid chromatography (RP-HPLC). Purified iturin-, surfactin-, and fengycin-type lipopeptides were identified using liquid chromatographymass spectrometry (LC-MS) analysis. Among the lipopeptides, C17-fengycin B showed strong antifungal activity against the phytopathogenic fungus, Fusarium oxysporum f. sp. radicis-lycopersici, and then the fengycin was further characterized by UV, Fourier transform-infrared spectroscopy (FT-IR), and LC-MS/MS analyses. C17-fengycin B was highly produced at quantities of up to 15 µg/mL at 37°C, whereas little amount of the fengycin was produced at 25°C. Purified C17-fengycin B inhibited mycelial growth of F. oxysporum with a minimal inhibitory concentration of 50 µg/mL. This study suggests that C17-fengycin B is a major antifungal component produced by the BC32-1 strain that could be used as an environmentally friendly agent to control the phytopathogenic F. oxysporum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Compant, S., B. Duffy, J. Nowak, C. Clement, and E. A. Barka (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951–4959.

    Article  CAS  Google Scholar 

  2. Ongena, M. and P. Jacques (2008) Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115–125.

    Article  CAS  Google Scholar 

  3. Raaijmakers, J. M., I. de Bruijn, and M. J. de Kock (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: Diversity, activity, biosynthesis, and regulation. Mol. Plant Microbe Interact. 19: 699–710.

    Article  CAS  Google Scholar 

  4. Katz, E. and A. L. Demain (1977) The peptide antibiotics of Bacillus: Chemistry, biogenesis, and possible functions. Bacteriol. Rev. 41: 449–474.

    CAS  Google Scholar 

  5. Schneider, T., A. Muller, H. Miess, and H. Gross (2014) Cyclic lipopeptides as antibacterial agents — potent antibiotic activity mediated by intriguing mode of actions. Int. J. Med. Microbial. 304: 37–43.

    Article  CAS  Google Scholar 

  6. Mondol, M. A. M., H. J. Shin, and M. T. Islam (2013) Diversity of secondary metabolites from marine Bacillus Species: Chemistry and biological activity. Mar. Drugs. 11: 2846–2872.

    Article  Google Scholar 

  7. Bernal, G., A. Illanes, and L. Ciampi (2002) Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp with antibiotic activity against plant pathogenic agents. Electron. J. Biotechnol. 5: 12–20.

    Article  Google Scholar 

  8. Delcambe, L., F. Peypoux, F. Besson, M. Guinand, and G. Michel (1977) Structure of iturin and iturin-like substances [proceedings]. Biochem. Soc. T. 5: 1122–1124.

    Article  CAS  Google Scholar 

  9. Peypoux, F., J. M. Bonmatin, and J. Wallach (1999) Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51: 553–563.

    Article  CAS  Google Scholar 

  10. Raaijmakers, J. M., I. De Bruijn, O. Nybroe, and M. Ongena (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbial. Rev. 34: 1037–1062.

    Article  CAS  Google Scholar 

  11. Vanittanakom, N., W. Loeffler, U. Koch, and G. Jung (1986) Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29–3. J. Antibiot. 39: 888–901.

    Article  CAS  Google Scholar 

  12. Deleu, M., M. Paquot, and T. Nylander (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys. J. 94: 2667–2679.

    Article  CAS  Google Scholar 

  13. Romano, A., D. Vitullo, A. Di Pietro, G. Lima, and V. Lanzotti (2011) Antifungal lipopeptides from Bacillus amyloliquefaciens strain BO7. J. Nat. Prod. 74: 145–151.

    Article  CAS  Google Scholar 

  14. Chen, X. H., A. Koumoutsi, R. Scholz, A. Eisenreich, K. Schneider, I. Heinemeyer, B. Morgenstern, B. Voss, W. R. Hess, O. Reva, H. Junge, B. Voigt, P. R. Jungblut, J. Vater, R. Süssmuth, H. Liesegang, A. Strittmatter, G. Gottschalk, and R. Borriss (2007) Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25: 1007–1014.

    Article  CAS  Google Scholar 

  15. Arguelles-Arias, A., M. Ongena, B. Halimi, Y. Lara, A. Brans, B. Joris, and P. Fickers (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 8: 63.

    Article  Google Scholar 

  16. Zhao, P., C. Quan, Y. Wang, J. Wang, and S. Fan (2014) Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. Spinaciae. J. Basic. Microbiol. 54: 448–456.

    Article  CAS  Google Scholar 

  17. Nam, J., H. Yun, J. Kim, P. I. Kim, S. W. Kim, H. B. Lee, J. I. Kim, and C. W. Lee (2015) Isolation and NMR analysis of antifungal Fengycin A and B from Bacillus amyloliquefaciens subsp. plantarum BC32–1. Bull. Kor. Chem. Soc. 36: 1316–1321.

    Article  CAS  Google Scholar 

  18. Benitez, L. B., R. V. Velho, M. P. Lisboa, L. F. Medina, and A. Brandelli (2010) Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J. Microbiol. 48: 791–797.

    Article  CAS  Google Scholar 

  19. Pecci, Y., F. Rivardo, M. G. Martinotti, and G. Allegrone (2010) LC/ESI-MS/MS characterisation of lipopeptide biosurfactants produced by the Bacillus licheniformis V9T14 strain. J. Mass Spectrom. 45: 772–778.

    Article  CAS  Google Scholar 

  20. Szczechura, W., M. Staniaszek, and H. Habdas (2013) Fusarium oxysporum f. sp. radicis-lycopersici — the cause of fusarium crown and root rot in tomato cultivation. J. Plant. Prot. Res. 53: 172–176.

    Article  Google Scholar 

  21. Kamilova, F., L. V. Kravchenko, A. I. Shaposhnikov, N. Makarova, and B. Lugtenberg (2006) Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol. Plant Microbe Interact. 19: 1121–1126.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si Wouk Kim or Chul Won Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, J., Jung, M.Y., Kim, P.I. et al. Structural characterization and temperature-dependent production of C17-fengycin B derived from Bacillus amyloliquefaciens subsp. plantarum BC32-1. Biotechnol Bioproc E 20, 708–713 (2015). https://doi.org/10.1007/s12257-015-0350-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0350-3

Keywords

Navigation