Skip to main content
Log in

Experimental study and kinetic modeling of cometabolic degradation of phenol and p-nitrophenol by loofa-immobilized Ralstonia eutropha

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In the present study, phenol-adapted cells of Ralstonia eutropha were used to degrade p-nitrophenol (PNP) in the presence of phenol. PNP at initial concentrations ranging from 5 to 15 mg/L was degraded almost completely by free cells of R. eutropha. The use of loofa-immobilized cells increased the complete removal of PNP up to 30 mg/L. Kinetic data for PNP biodegradation by immobilized cells of R. eutropha best fitted the Haldane model. The kinetic parameters were k s = 0.0006 (mg PNP/mg biomass.h), K s = 8.83 (mg/L) and K i = 30.77 (mg/L). The degradation pathways of PNP through the metabolites, 4-nitro-catechol (4-NC) and hydroquinone (HQ), were investigated using HPLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ju, K. S. and R. E. Parales (2010) Nitroaromatic compounds from synthesis to biodegradation. Microbiol. Mol. Biol. R. 74: 250–272.

    Article  CAS  Google Scholar 

  2. Qiu, X., Q. Zhong, M. Li, W. Bai, and B. Li (2007) Biodegradation of p-nitrophenol by methyl parathion-degrading Ochrobactrum sp. B2. Int. Biodeter. Biodegr. 59: 297–301.

    Article  CAS  Google Scholar 

  3. Bhatti, Z. I., H. Toda, and K. Furukawa (2002) p-Nitrophenol degradation by activated sludge attached on nonwovens. Water Res. 36: 1135–1142.

    Article  CAS  Google Scholar 

  4. Zheng, Y., D. Liu, H. Xu, Y. Zhong, Y. Yuan, L. Xiong, and W. Li (2009) Biodegradation of p-nitrophenol by Pseudomonas aeruginosa HS-D38 and analysis of metabolites with HPLC-ESI/MS. Int. Biodeter. Biodegr. 63: 1125–1129.

    Article  CAS  Google Scholar 

  5. ATSDR (Agency for Toxic Substances and Disease Registry) (1992) Toxicological Profile for Nitrophenols: 2-nitrophenol and 4-nitrophenol. US Department of Health and Human Services, Public Health Service, Atlanta, USA.

    Google Scholar 

  6. Kulkarni, M. and A. Chaudhari (2006) Biodegradation of p-nitrophenol by P. putida. Bioresour. Technol. 97: 982–988.

    Article  CAS  Google Scholar 

  7. Zhang, J., Z. Sun, Y. Li, X. Peng, W. Li, and Y. Yan (2009) Biodegradation of p-nitrophenol by Rhodococcus sp. CN6 with high cell surface hydrophobicity. J. Hazard. Mater. 163: 723–728.

    Article  CAS  Google Scholar 

  8. Kulkarni, M. and A. Chaudhari (2007) Microbial remediation of nitro-aromatic compounds: An overview. J. Environ. Manage. 85: 496–512.

    Article  CAS  Google Scholar 

  9. Leung, K. T., M. Moore, H. Lee, and J. T. Trevors (2005) Effect of carbon starvation on p-nitrophenol degradation by a Moraxella strain in buffer and river water. FEMS Microbiol. Ecol. 51: 237–245.

    Article  CAS  Google Scholar 

  10. Wang, S. J. and K. C. Loh (2000) Growth kinetics of Pseudomonas putida in cometabolism of phenol and 4-chlorophenol in the presence of a conventional carbon Source. Biotechnol. Bioeng. 68: 437–447.

    Article  CAS  Google Scholar 

  11. Wang, S. J. and K. C. Loh (2001) Biotransformation kinetics of Pseudomonas putida for cometabolism of phenol and 4-chlorophenol in the presence of sodium glutamate. Biodegradation 12: 189–199.

    Article  CAS  Google Scholar 

  12. Alvarez-Cohen, L. and G. E. Speitel Jr. (2001) Kinetics of aerobic cometabolism of chlorinated solvents. Biodegradation, 12: 105–126.

    Article  CAS  Google Scholar 

  13. Chen, Y. M., T. F. Lin, C. Huang, J. C. Lin, and F. M. Hsieh (2007) Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. J. Hazard. Mater. 148: 660–670.

    Article  CAS  Google Scholar 

  14. Zamir, S. M., M. Ferdowsi, and R. Halladj (2014) Effect of loading type and temperature on performance, transient operation, and kinetics of n-hexane vapor removal in a biofilter. Water Air Soil Pollut. 225: 1825.

    Article  Google Scholar 

  15. Hajar, M., S. Shokrollahzadeh, F. Vahabzadeh, and A. Monazzami (2009) Solvent-free methanolysis of canola oil in a packedbed reactor with use of Novozym 435 plus loofa. Enz. Microb. Tech. 45: 188–194.

    Article  CAS  Google Scholar 

  16. Nickzad, A., A. Mogharei, A. Monazzami, H. Jamshidian, and F. Vahabzadeh (2012) Biodegradation of phenol by Ralstonia eutropha in a kissiris-immobilized cell bioreactor. Water Environ. Res. 84: 626–634.

    Article  CAS  Google Scholar 

  17. Salehi, Z., M. Sohrabi, F. Vahabzadeh, S. Fatemi, and Y. Kawase (2010) Modeling of p-nitrophenol biodegradation by Ralstonia eutropha via application of the substrate inhibition concept. J. Hazard. Mater. 177: 582–585.

    Article  CAS  Google Scholar 

  18. Wang, S. J., K. C. Loh, and S. S. Chua (2003) Prediction of critical cell growth behavior of Pseudomonas putida to maximize the cometabolism of 4-chlorophenol with phenol and sodium glutamate as carbon sources. Enz. Microb. Tech. 32: 422–430.

    Article  CAS  Google Scholar 

  19. Arp, D. J., C. M. Yeager, and M. R. Hyman (2001) Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene. Biodegradation 12: 81–103.

    Article  CAS  Google Scholar 

  20. Dursun, A. Y. and O. Tepe (2005) Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha, J. Hazard. Mater. 126: 105–111.

    Article  CAS  Google Scholar 

  21. Suttinun, O., E. Luepromchai, and R. Muller (2013) Cometabolism of trichloroethylene: concepts, limitations and available strategies for sustained biodegradation. Rev. Environ. Sci. Technol. 12: 99–114.

    CAS  Google Scholar 

  22. Sedighi, M. and F. Vahabzadeh (2014) Kinetic Modeling of Cometabolic Degradation of Ethanethiol and Phenol by Ralstonia eutropha. Biotechnol. Bioproc. Eng. 19: 239–249.

    Article  CAS  Google Scholar 

  23. Zhang, S., W. Sun, L. Xu, X. Zheng, X. Chu, J. Tian, N. Wu, and Y. Fan (2012) Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1–7. BMC Microbiol. 12: 27–37.

    Article  CAS  Google Scholar 

  24. Pakala, S. B., P. Gorla, A. B. Pinjari, R. K. Krovidi, R. Baru, M. Yanamandra, M. Merrick, and D. Siddavattam (2007) Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Appl. Microbiol. Biotechnol. 73: 1452–1462.

    Article  CAS  Google Scholar 

  25. Kitagawa, W., N. Kimura, and Y. Kamagata (2004) A novel pnitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101. J. Bacteriol. 186: 4894–4902.

    Article  CAS  Google Scholar 

  26. Chauhan, A., G. Pandey, N. K. Sharma, D. Paul, J. Pandey, and R. K. Jain (2010) P-Nitrophenol degradation via 4-nitrocatechol in Burkholderia sp. SJ98 and cloning of some of the lower pathway genes. Environ. Sci. Technol. 44: 3435–3441.

    Article  CAS  Google Scholar 

  27. Kadiyala, V. and J. C. Spain (1998) A two-component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl. Environ. Microbiol. 64: 2479–2484.

    CAS  Google Scholar 

  28. Arora, P. K., A. Srivastava, and V. P. Singh (2014) Bacterial deg-radation of nitrophenols and their derivatives. J. Hazard. Mater. 266: 42–59.

    Article  CAS  Google Scholar 

  29. Chen, Y. C., T. F. Lin, C. Huang, J. C. Lin, and F. M. Hsiesh (2007) Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. J. Hazard. Mater. 148: 660–670.

    Article  CAS  Google Scholar 

  30. Sedighi, M., F. Vahabzadeh, S. M. Zamir, and A. Naderifar (2013) Ethanethiol degradation by Ralstonia eutropha. Biotechnol. Bioproc. Eng. 18: 827–833.

    Article  CAS  Google Scholar 

  31. Futamata, H., S. Harayama, and K. Watanabe (2001) Diversity in kinetics of trichloroethylene-degrading bacteria. Appl. Microbiol. Biotechnol. 55: 248–253.

    Article  CAS  Google Scholar 

  32. Motamedi, M., A. Habibi, M. Maleki, and F. Vahabzadeh (2014) Kinetic Modeling of p-nitrophenol and phenol by kissiris-immobilized Ralstonia eutropha in a batch reactor. Clean-Soil, Air, Water, DOI: 10.1002/clen.201300635.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Morteza Zamir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, M., Motamedi, M., Sedighi, M. et al. Experimental study and kinetic modeling of cometabolic degradation of phenol and p-nitrophenol by loofa-immobilized Ralstonia eutropha . Biotechnol Bioproc E 20, 124–130 (2015). https://doi.org/10.1007/s12257-014-0593-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0593-4

Keywords

Navigation