Skip to main content
Log in

Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta)

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study examined two gregarious Orthoptera species (Calliptamus barbarus and Oedaleus decorus) as potential sources of chitin. The chitin content of the dry weight of C. barbarus was 20.5 ± 0.7%, and it was 16.5 ± 0.7% for O. decorus. Furthermore, the yield of chitosan (70 ~ 75% deacetylation degree) from the grasshopper species was found to be 74 ~ 76%, which is close to the yield of commercial preparations obtained from the unused parts of crabs and shrimp. The chitin and chitosan obtained in this way were analyzed using FTIR, TGA, XRD and SEM techniques, and the antimicrobial properties of chitosans obtained from C. barbarus and O. decorus against pathogenic microorganisms of humans and fish were investigated using the disc diffusion and microdilution broth methods. The antimicrobial screening procedures indicated that the chitosan showed significant antimicrobial activity against all of the tested pathogenic microorganisms. The MBC or MFC values were determined to be 0.16 ~ 2.50 mg/mL. The IC50 values for the chitins obtained from C. barbarus and O. decorus were 10.68 ± 0.27 and 10.91 ± 0.96 mg/mL, respectively, which were greater than the value for butylated hydroxytoluene (BHT): 0.04 ± 0.01 mg/mL. These results suggest that these two species, which are currently considered to be pests because of over-breeding, are potentially alternative sources of chitin and chitosan, which are used in the food/feed industry for their antimicrobial and antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brunner, E., H. Ehrlich, P. Schupp, R. Hedrich, S. Hunold, M. Kammer, S. Machill, S. Paasch, V.V. Bazhenov, D.V. Kurek, T. Arnold, S. Brockmann, M. Ruhnow, and R. Born (2009) Chitinbased scaffolds are an integral part of the skeleton of the marine demosponge Ianthella basta. J. Struct. Biol. 168: 539–547.

    Article  CAS  Google Scholar 

  2. Ehrlich, H. (2010) Chitin and Collagen as Universal and Alter-native Templates in Biomineralization. Int. Geol. Rev. 52: 661–699.

    Article  Google Scholar 

  3. Ehrlich, H., O.V. Kaluzhnaya, M.V. Tsurkan, A. Ereskowsky, K.R. Tabachnick, M. Ilan, A. Stelling, R. Galli, O.V. Petrova, S.V. Nekipelov, V.N. Sivkov, D. Vyalikh, R. Born, T. Behm, A. Ehrlich, L.I. Chernogor, S. Belikov, D. Janussen, V.V. Bazhenov, and G. Wörheide (2013a) First report on chitinous holdfast in sponges (Porifera). Proc. R. Soc. B. 280: 1471–2954.

    Google Scholar 

  4. Synowiecki, J. and N.A. Al-Khateeb (2003) Production, properties, and some new applications of chitin and its derivatives. Crit Rev Food Sci. 43: 145–171.

    Article  CAS  Google Scholar 

  5. Rinaudo, M. (2006) Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 3: 603–632.

    Article  Google Scholar 

  6. Park, B.K. and M.M. Kim (2010) Applications of chitin and its derivatives in biological medicine. Int. J. Mol. Sci. 11: 5152–5164.

    Article  CAS  Google Scholar 

  7. Ehrlich H., P. Simon, M. Motylenko, M. Wysokowski, V.V. Bazhenov, R. Galli, A.L. Stelling, D. Stawski, M. Ilan, H. Stöcker, B. Abendroth, R. Born, T. Jesionowski, and D.C. Meyer (2013b) Extreme Biomimetics: Formation of Zirconium Dioxide Nanophase Using Chitinous Scaffolds under Hydrothermal Conditions. J. Mater. Chem. B 1: 5092–5099.

    Article  CAS  Google Scholar 

  8. Yang J.K., I.L. Shih, Y.M. Tzeng, and S.L. Wang (2000) Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb. Tech. 26: 406–413.

    Article  CAS  Google Scholar 

  9. Nemtsev, S.V., O.Y. Zueva, M.R. Khismatullin, A.I. Albulov, and V.P. Varlamov (2004) Isolation of chitin and chitosan from honeybees. Appl. Biochem. Microbiol. 40: 39–43.

    Article  CAS  Google Scholar 

  10. Zhang, M., A. Haga, H. Sekigushi, and S. Hirano (2000) Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. Int. J. Biol. Macromol. 27: 99–105.

    Article  CAS  Google Scholar 

  11. Majtan, J., K. Bilikova, O. Markovic, J. Grof, G. Kogan, and J. Simuth (2007) Isolation and characterization of chitin from bumblebee (Bombus terrestris). Int. J. Biol. Macromol. 40: 237–241.

    Article  CAS  Google Scholar 

  12. Ai, H., F. Wang, Q. Yang, F. Zhu, and C. Lei (2008) Preparation and biological activities of chitosan from the larvae of housefly, Musca domestica. Carbohyd. Polym. 72: 419–423.

    Article  CAS  Google Scholar 

  13. Yen, M. and J. Mau (2006) Preparation of fungal chitin and chitosan from shiitakes tips. Fung. Sci. 21: 1–11.

    Google Scholar 

  14. Durkin, C.A., T. Mock, and E.V. Armbrust (2009) Chitin in diatomsand its association with the cell wall. Eukaryot Cell 8: 1038–1050.

    Article  CAS  Google Scholar 

  15. Juárez-de la Rosa, B.A., P. Quintana, P.L. Ardisson, J.M. Yáñez-Limón, and J.J. Alvarado-Gil (2012) Effects of thermal treatments on the structure of two black coral species chitinous exoskeleton. J. Mater. Sci. 47: 990–998.

    Article  Google Scholar 

  16. Bo, M., G. Bavestrello, D. Kurek, S. Paasch, E. Brunner, R. Born, R. Galli, A.L. Stelling, V.N. Sivkov, O.V. Petrova, D.V. Yalikh, K. Kummer, S.L. Molodtsov, D. Nowak, J. Nowak, and H. Ehrlich (2012) Isolation and identification of chitin in the black coral Parantipatheslarix (Anthozoa: Cnidaria). Int. J. Biol. Macromol. 51: 129–137.

    Article  CAS  Google Scholar 

  17. Liu, S, J. Sun, L. Yu, C. Zhang, J. Bi, F. Zhu, M. Qu, C. Jiang, and Q. Yang (2012) Extraction and characterization of chitin from the beetle Holotrichia parallela motschulsky. Molecules 17: 4604–4611.

    Article  CAS  Google Scholar 

  18. Ritchie, M.J. (1981) A taxonomic revision of the genus Oedaleus (Orthoptera: Acrididae). Bulletin of the British Museum (Natural History). Entomology Series 42: 83–183.

    Google Scholar 

  19. Bei-Bienko, G.J. and L.L. Mistshenko (1951) The grashopper of the fauna of the USSR and adjacent countries. Leningra, Moskova.

    Google Scholar 

  20. Blanchet, E., M. Lecoq, G.A. Sword, C. Pages, L. Blondin, C. Billot, R. Rivallan, A. Foucart, J.M. Vassal, A.M. Risterucci, and M.P. Chapuis (2012) Population structures of three Calliptamus spp. (Orthoptera:Acrididae) across the Western Mediterranean Basin. Eur. J. Entomol. 109: 445–445.

    Article  Google Scholar 

  21. Kurita, K. (1998) Chemistry and application of chitin and chitosan. Polym. Degrad. Stabil. 59: 117–120.

    Article  CAS  Google Scholar 

  22. Nam, K.S. (2001) Evaluation of the antimutagenic potential of chitosan oligosaccharide: Rec, Ames and Umu tests. Biotechnol. Lett. 23: 971–975.

    Article  CAS  Google Scholar 

  23. Salmabi, K.A. and P.N. Seema (2013) Antibacterial potential of chitosan on pathogenic Gram positive cocci. Advanced BioTech. 12: 10–13.

    Google Scholar 

  24. Chung, Y.C., Y.P. Su, C.C. Chen, G. Jia, H.L. Wang, J.C.G. Wu, and J.G. Lin (2004) Relationship between antibacterial activity of chitosans and surface characteristics of cell wall. Acta Pharmacol. Sin. 25: 932–936.

    CAS  Google Scholar 

  25. No, H.K., N.Y. Park, S.H. Lee, and S.P. Meyers (2002) Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol. 74: 65–72.

    Article  CAS  Google Scholar 

  26. Zhong, Z.M., R.G. Xing, S. Liu, L. Wang, S.B. Cai, and P.C. Li (2008) Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. Carbohyd. Res. 343: 566–570.

    Article  CAS  Google Scholar 

  27. Jeon, Y.J, P.J. Park, and S.K. Kim (2001) Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohyd. Polym. 44: 71–76.

    Article  CAS  Google Scholar 

  28. Kong, M., X.G. Chen, K. Xing, and H.J. Park (2010) Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 144: 51–63.

    Article  CAS  Google Scholar 

  29. Lin, H.Y. and C.C. Chou (2004) Antioxidant activities of water-soluble disaccharide chitosan derivatives. Food Res. Int. 37: 883–889.

    Article  CAS  Google Scholar 

  30. Yen, M.T., Y.H. Tseng, R.C. Li, and J.L. Mau (2007) Antioxidant properties of fungal chitosan from shiitake stipes. LWT-Food Sci. Technol. 40: 255–261.

    Article  CAS  Google Scholar 

  31. Yen, M.T., J.H. Yang, and J.L. Mau (2008) Antioxidant properties of chitosan from crab shells. Carbohyd. Polym. 74: 840–844.

    Article  CAS  Google Scholar 

  32. Charernsriwilaiwat, N., P. Opanasopit, T. Rojanarata, and T. Ngawhirunpat 2012. In vitro antioxidant activity of chitosan aqueous solution: Effect of salt form. LWT -Food Sci. Technol. 11(2): 235–242.

    CAS  Google Scholar 

  33. Baxter, A., M. Dillon, K.D.A. Taylor, and G.A.F. Roberts (1992) Improved method for i.r. determination of the degree of N-acetylation of chitosan. Int. J. Biol. Macromol. 14: 166–169.

    Article  CAS  Google Scholar 

  34. Murray, P.R., E.J. Baron, M.A. Pfaller, F.C. Tenover, and R.H. Yolke (1995) Manual of Clinical Microbiology. 6th ed., Washington, USA.

    Google Scholar 

  35. Chandrasekaran, M. and V. Venkatesalu (2004) Antibacterial and antifungal activity of Syzygium jambolanum seeds. J. Ethnopharmacol. 91: 105–108.

    Article  CAS  Google Scholar 

  36. Kirby, A.J. and R.J. Schmidt (1997) The antioxidant activity of Chinese herbs for eczema and of placebo herbs. J. Ethnopharmacol. 56: 103–108.

    Article  CAS  Google Scholar 

  37. Oyaizu, M. (1986) Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307–315.

    Article  CAS  Google Scholar 

  38. Jiang, J.C. and Q. Xu (2006) Kinetics of heterogeneous deacetylation of β-chitin. Chem. Eng. Technol. 29: 511–516.

    Article  CAS  Google Scholar 

  39. Minke, R. and J. Blackwell (1978) The structure of alpha-chitin. J. Mol. Biol. 120: 167–181.

    Article  CAS  Google Scholar 

  40. Sajomsang W. and P. Gonil (2010) Preparation and characterization of α-chitin from cicadasloughs. Mater. Sci. Eng. C. 30: 357–363.

    Article  CAS  Google Scholar 

  41. Singh, D.K. and A.R. Ray (1994) Graft copolymerization of 2-hydroxyethylmethacrylate onto chitosan films and their blood compatibility. J Appl Polym. Sci. 53: 1115–1121.

    Article  CAS  Google Scholar 

  42. Qu, X., A. Wirsen, and A.C. Albertsson (2000) Effect of lactic/glycolic acid side chains on the thermal degradation kinetics of chitosan derivatives. Polymer 41: 4841–4847.

    Article  CAS  Google Scholar 

  43. Peng, T. and M.F.A. Goosen (1994) Structural changes of pH-sensitive chitosan/polyether hydrogels in different pH solution. J. Polym. Sci. Pol. Chem. 32(3): 591–596.

    Article  CAS  Google Scholar 

  44. Peniche, C., C. Elvira, and S.J. Roman (1998) Interpolymer complexes of chitosan and polymethacrylic derivatives of salicylic acid: preparation, characterization and modification by thermal treatment. Polymer 39: 6549–6554.

    Article  CAS  Google Scholar 

  45. Paulino, A.T., J.I. Simionato, J.C. Garcia, and J. Nozaki (2006) Characterization of chitosan and chitin produced from silk worm chrysalides. Carbohydr. Polym. 64: 98–103.

    Article  CAS  Google Scholar 

  46. Mohammed, M.H., P.A. Williams, and O. Tverezovskaya (2013) Extraction of chitin from prawn shells and conversion to low molecular mass Chitosan. Food Hydrocolloids 31: 166–171.

    Article  CAS  Google Scholar 

  47. Kittur, F., H. Prashanth, K. Sankar, and R. Tharanathan (2002) Characterization of chitin, chitosan and their carboxymethyl derivatives by differential scanning calorimetry. Carbohydr. Poly. 49: 185–193.

    Article  CAS  Google Scholar 

  48. Jayakumar R., T. Egawa, T. Furuike, S.V. Nair, and H. Tamura (2009) Synthesis, characterization, and thermal properties of phosphorylated chitin for biomedical applications. Polym. Eng. Sci. 49: 844–849.

    Article  CAS  Google Scholar 

  49. Yen, M.T., J.H. Yang, and J.L. Mau (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohydr. Polym. 75: 15–21.

    Article  CAS  Google Scholar 

  50. Wang, Y., Y. Chang, L. Yu, C. Zhang, X. Xu, Y. Xue, Z. Li, and C. Xue (2013) Crystalline structure and thermal property characterization of chitin from Antarctickrill (Euphausia superba). Carbohydr. Polym. 92: 90–97.

    Article  CAS  Google Scholar 

  51. Kucukgulmez, A., M. Celik, Y. Yanar, D. Sen, H. Polat, and A.E. Kadak (2011) Physicochemical characterization of chitosan extracted from Metapenaeus stebbingi shells. Food Chem. 126: 1144–1148.

    Article  CAS  Google Scholar 

  52. No, H.K. and S.P.J. Meyers (1995) Preparation and characterization of chitin and chitosan-a review. Aquat. Food Prod. T. 4: 27–52.

    Article  CAS  Google Scholar 

  53. Muzzarelli, R.A.A, M. Tomasetti, and P. Ilari (1994) Depolymerization of chitosan with the aid of papain. Enzyme Microb. Tech. 16: 110–114.

    Article  CAS  Google Scholar 

  54. No, H.K., J.W. Nah, and S.P. Meyers (2003) Effect of time/temperature treatment parameters on depolymerization of chitosan. J. Appl. Polym. Sci. 87: 1890–1894.

    Article  CAS  Google Scholar 

  55. No, H.K., S.H. Kim, S.H. Lee, N.Y. Park, and W. Prinyawiwatkul (2006) Stability and antibacterial activity of chitosan solutions affected by storage temperature and time. Carbohydr. Polym. 65: 174–178.

    Article  CAS  Google Scholar 

  56. Raafat, D., K. von Bargen, A. Haas, and H.-G. Sahl (2008) Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 74(12): 3764–3773.

    Article  CAS  Google Scholar 

  57. Islam, M.M.D, S.M.D. Masum, and K.R. Mahbub (2011) In vitro antibacterial activity of shrimp chitosan against Salmonella paratyphi and Staphylococcus aureus. Journal of Bangladesh Chemical Society 24(2): 185–190.

    CAS  Google Scholar 

  58. Tsai, G.J., W.H. Su, H.C. Chen, and C.L. Pan (2002) Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fisheries Sci. 68: 170–177.

    Article  CAS  Google Scholar 

  59. Ing, L.Y., N.M. Zin, A. Sarwar, and H. Katas (2012) Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International Journal of Biomaterials, Volume Article ID 632698, 9 pages. Doi:10.1155/2012/632698.

    Google Scholar 

  60. Douglas, L.J. (2003) Candida biofilms and their role in infection. Trends Microbiol. 11: 30–36.

    Article  CAS  Google Scholar 

  61. Perea, S. and T.F. Patterson (1999) The role of antifungal susceptibility testing in the management of patients with invasive mycoses. Rev. Iberoam Micol. 16: 180–186.

    CAS  Google Scholar 

  62. Matsugo, S., M. Mizuie, M. Matsugo, R. Ohwa, H. Kitano, and T. Konishi (1998) Synthesis and antioxidant activity of water-soluble chitosan derivatives. Biochem. Mol. Biol. Int. 44(5): 939–948.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Kaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, M., Baran, T., Asan-Ozusaglam, M. et al. Extraction and characterization of chitin and chitosan with antimicrobial and antioxidant activities from cosmopolitan Orthoptera species (Insecta). Biotechnol Bioproc E 20, 168–179 (2015). https://doi.org/10.1007/s12257-014-0391-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0391-z

Keywords

Navigation