Skip to main content
Log in

Surface modification of cowpea chlorotic mottle virus capsids via a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and their adhesion behavior with HeLa cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction was exploited for the surface modification of cowpea chlorotic mottle virus (CCMV). The exposed carboxyl residues of the CCMV capsids were modified with an alkyne and then further modified with an azide, using a triazole connection in the presence of CuSO4, tris(2-carboxyethyl)phosphine hydrochloride (TCEP), and a bathocuproin disulfonic acid disodium salt (BCDS). Fluorogenic coumarin was successfully grafted onto the CCMV capsids and monitored by fast protein liquid chromatography (FPLC) and UV-irradiated SDS-PAGE. An oligo-ethylene glycol (OEG) short chain and an Arg-Gly-Asp (RGD) peptide were also connected to the CCMV capsids via the CuAAC reaction. Size-exclusion FPLC, transmission electron microscopy (TEM), and dynamic light scattering (DLS) analyses confirmed the modification and integrity of the viral capsids. Interestingly, OEG-CCMV displayed a unique phenomenon of connected bridges with the intact capsids crosslinked to each other. Coumarin-CCMV, OEG-CCMV, and RGD-CCMV were absorbed onto APTES slides for cell binding with HeLa cells. The opposite adhesion behavior of OEG-CCMV and RGD-CCMV indicated the inhibition effect of OEG and the promotion effect of RGD for cell attachment. This provides a generalized method for chemical modification of the surface of virus capsids with multivalent ligands, which demonstrates the potential applications in bioimaging, tissue engineering, and drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Z., J. Qiao, Z. Niu, and Q. Wang (2012) Natural supramolecular building blocks: From virus coat proteins to viral nanoparticles. Chem. Soc. Rev. 41: 6178–6194.

    Article  CAS  Google Scholar 

  2. Bronstein, L. M. (2011) Virus-based nanoparticles with inorganic cargo: What does the future hold? Small 7: 1609–1618.

    Article  CAS  Google Scholar 

  3. Strable, E. and M. G. Finn (2009) Chemical modification of viruses and virus-like particles. Curr. Top. Microbiol. Immunol. 327: 1–21.

    CAS  Google Scholar 

  4. Hosseinkhani, H., W. He, C. Chiang, P. D. Hong, D. S. Yu, A. J. Domb, and K. Ou (2013) Biodegradable nanoparticles for gene therapy technology. J. Nanopart. Res. 15: 1–15.

    Google Scholar 

  5. Bancroft, J. B., G. J. Hills, and R. Markham (1967) A study of the self-assembly process in a small spherical virus. Formation of organized structures from protein subunits in vitro. Virol. 31: 354–379.

    Article  CAS  Google Scholar 

  6. Chen, Z., C. Stauffacher, and J. E. Johnson (1990) Capsid structure and RNA packaging in comovirus. Semin. Virol. 1: 453–466.

    Google Scholar 

  7. Speir, J. A., S. Munshi, G. Wang, T. S. Baker, and J. E. Johnson (1995) Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3: 63–78.

    Article  CAS  Google Scholar 

  8. Lee, L. A., Z. Niu, and Q. Wang (2009) Viruses and virus-like protein assemblies—chemically programmable nanoscale building blocks. Nano Res. 2: 349–364.

    Article  CAS  Google Scholar 

  9. Wu, Y., H. Yang, and H. J. Shin (2013) Viruses as self-assembled nanocontainers for encapsulation of functional cargoes. Kor. J. Chem. Eng. 30: 1359–1367.

    Article  CAS  Google Scholar 

  10. Johnson, J. E. and J. A. Speir (1997) Quasi-equivalent viruses: a paradigm for protein assemblies. J. Mol. Biol. 269: 665–675.

    Article  CAS  Google Scholar 

  11. Reddy, V. S., P. Natarajan, B. Okerberg, K. Li, K. V. Damodaran, R. T. Morton, C. L. Brooks, and J. E. Johnson (2001) Virus Particle Explorer (VIPER), a website for virus capsid structures and their computational analyses. J. Virol. 75: 11943–11947.

    Article  CAS  Google Scholar 

  12. Gillitzer, E., D. Willits, M. Young, and T. Douglas (2002) Chemical modification of a viral cage for multivalent presentation. Chem. Commun. 20: 2390–2391.

    Article  Google Scholar 

  13. Koudelka, K. J. and M. Manchester (2010) Chemically modified viruses: Principles and applications. Curr. Opin. Chem. Biol. 14: 810–817.

    Article  CAS  Google Scholar 

  14. Kolb, H. C., M. G. Finn, and K. B. Sharpless (2001) Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40: 2004–2021.

    Article  CAS  Google Scholar 

  15. Rostovtsev, V. V., L. G. Green, V. V. Fokin, and K. B. Sharpless (2002) A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. 41: 2596–2599.

    Article  CAS  Google Scholar 

  16. TornØe, C. W., C. Christensen, and M. Meldal (2002) Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67: 3057–3064.

    Article  Google Scholar 

  17. Hong, V., S. I. Presolski, C. Ma, and M. G. Finn (2009) Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. Angew. Chem. Int. Ed. 48: 9879–9883.

    Article  CAS  Google Scholar 

  18. Wang, Q., T. R. Chan, R. Hilgraf, V. V. Fokin, K. B. Sharpless, and M. G. Finn (2003) Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J. Am. Chem. Soc. 125: 3192- 3193.

    Article  CAS  Google Scholar 

  19. Gupta, S. S., J. Kuzelka, P. Singh, W. G. Lewis, M. Manchester, and M. G. Finn (2005) Accelerated bioorthogonal cojugation: A practical method for ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjugate Chem. 16: 1572–1579.

    Article  Google Scholar 

  20. Bruckman, M. A., G. Kaur, L. A. Lee, F. Xie, J. Sepulveda, R. Breitenkamp, X. Zhang, M. Joralemon, T. P. Russell, T. Emrick, and Q. Wang (2008) Surface modification of tobacco mosaic virus with “Click” chemistry. ChemBioChem 9: 519–523.

    Article  CAS  Google Scholar 

  21. Zeng, Q., S. Saha, L. A. Lee, H. Barnhill, J. Oxsher, T. Dreher, and Q. Wang (2011) Chemoselective modification of turnip yellow mosaic virus by Cu(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition reaction and its application in cell binding. Bioconjugate Chem. 22: 58–66.

    Article  CAS  Google Scholar 

  22. Wu, Y., H. Yang, and H. J. Shin (2014) Encapsulation and crystallization of Prussian blue nanoparticles by cowpea chlorotic mottle virus capsids. Biotechnol. Lett. 36: 515–521.

    Article  CAS  Google Scholar 

  23. Schlick, T. L., Z. Ding, E. W. Kovacs, and M. B. Francis (2005) Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc. 127: 3718–3723.

    Article  CAS  Google Scholar 

  24. Steinmetz, N. F., G. P. Lomonossoff, and D. J. Evans (2006) Cowpea mosaic virus for material fabrication: Addressable carboxylate groups on a programmable nanoscaffold. Langmuir 22: 3488–3490.

    Article  CAS  Google Scholar 

  25. Shangari, N., T. S. Chan, K. Chan, S. H. Wu, and P. J. O’Brien (2007) Copper-catalyzed ascorbate oxidation results in glyoxal/AGE formation and cytotoxicity. Mol. Nutr. Food Res. 51: 445–455.

    Article  CAS  Google Scholar 

  26. Sivakumar, K., F. Xie, B. M. Cash, S. Long, H. N. Barnhill, and Q. Wang (2004) A fluorogenic 1,3-dipolar cycloaddition reaction of 3-azidocoumarins and acetylenes. Org. Lett. 6: 4603–4606.

    Article  CAS  Google Scholar 

  27. Yamada, K., S. Yoshii, S. Kumagai, I. Fujiwara, K. Nishio, M. Okuda, N. Matsukawa, and I. Yamashita (2006) High-density and highly surface selective adsorption of protein-nanoparticle complexes by controlling electrostatic interaction. Jpn. J. Appl. Phys. 45: 4259–4264.

    Article  CAS  Google Scholar 

  28. Rong, J., L. A. Lee, K. Li, B. Harp, C. M. Mello, Z. Niu, and Q. Wang (2008) Oriented cell growth on self-assembled bacteriophage M13 thin films. Chem. Commun. 41: 5185–5187.

    Article  Google Scholar 

  29. Lavelle, L., M. Gingery, M. Phillips, W. M. Gelbart, C. M. Knobler, R. D. Cadena-Nava, and J. Ruiz-Garcia (2009) Phase diagram of self-assembled viral capsid protein polymorphs. J. Phys. Chem. B. 113: 3813–3819.

    Article  CAS  Google Scholar 

  30. Waldeck, J., F. Häger, C. Höltke, C. Lanckohr, A. von Wallbrunn, G. Torsello, W. Heindel, G. Theilmeier, M. Schäfers, and C. Bremer (2008) Fluorescence reflectance imaging of macrophagerich atherosclerotic plaques using an alphav-beta3 integrin-targeted fluorochrome. J. Nucl. Med. 49: 1845–1851.

    Article  Google Scholar 

  31. Laitinen, I., A. Saraste, E. Weidl, T. Poethko, A. W. Weber, S. G. Nekolla, P. Leppänen, S. Ylä-Herttuala, G. Hälzlwimmer, A. Walch, I. Esposito, H. J. Wester, J. Knuuti, and M. Schwaiger (2009) Evaluation of alphavbeta3 integrin-targeted positron emission tomography tracer 18F-galacto-RGD or imaging of vascular inflammation in atherosclerotic mice. Circ. Cardiovasc. Imaging 2: 331–338.

    Article  Google Scholar 

  32. Flores, K. A., J. C. Salgado, G. Zapata-Torres, Z. P. Gerdtzen, M. J. Gonzalez, and M. A. Hermoso (2012) Effect of the electrostatic potential on the internalization mechanism of cell penetrating peptides derived from TIRAP. Biotechnol. Bioproc. Eng. 17: 485–499.

    Article  CAS  Google Scholar 

  33. Desai, N. P. and J. A. Hubbell (1991) Biological responses to polyethylene oxide modified polyethylene terephthalate surfaces. J. Biomed. Mater. Res. 25: 829–843.

    Article  CAS  Google Scholar 

  34. McPherson, T., A. Kidane, I. Szleifer, and K. Park (1998) Prevention of protein adsorption by tethered poly (ethylene oxide) layers: Experiments and single-chain mean-field analysis. Langmuir 14: 176–186.

    Article  CAS  Google Scholar 

  35. Kaur, G., W. Zhan, C. Wang, H. Barnhill, H. Tian, and Q. Wang (2010) Crosslinking of viral nanoparticles with “clickable” fluorescent crosslinkers at the interface. Sci. China Chem. 53: 1287–1293.

    Article  CAS  Google Scholar 

  36. Rhee, S. and F. Grinnell (2007) Fibroblast mechanics in 3D collagen matrices. Adv. Drug Delivery Rev. 59: 1299–1305.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Jae Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Yang, H., Jeon, YJ. et al. Surface modification of cowpea chlorotic mottle virus capsids via a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction and their adhesion behavior with HeLa cells. Biotechnol Bioproc E 19, 747–753 (2014). https://doi.org/10.1007/s12257-014-0145-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0145-y

Keywords

Navigation