Skip to main content
Log in

Early Hereditary Diffuse Gastric Cancer (eHDGC) is Characterized by Subtle Genomic Instability and Active DNA Damage Response

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Diffuse gastric cancer (DGC) is one of the two primary types of stomach cancer. Carriers of germline mutations in the gene encoding E-cadherin are predisposed to DGC. The primary aim of the present study was to determine if genomic instability is an early event in DGC and how it may lead to disease progression. Chromosomal aberrations in early intramucosal hereditary diffuse gastric cancer (eHDGC) were assessed using array comparative genomic hybridization (array CGH). Notably, no aneuploidy or other large-scale chromosomal rearrangements were detected. Instead, all aberrations affected small regions (< 4.8 Mb) and were predominantly deletions. Analysis of DNA sequence patterns revealed that essentially all aberrations possessed the characteristics of common fragile sites. These results and the results of subsequent immunohistochemical examinations demonstrated that unlike advanced DGC, eHDGCs is characterized by low levels of genomic instability at fragile sites. Furthermore, they express an active DNA damage response, providing a molecular basis for the observed indolence of eHDGC. This finding is an important step to understanding the pathology underlying natural history of DGC and supports a revision of the current definition of eHDGC as a malignant disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108

    Article  PubMed  Google Scholar 

  2. Crew KD (2006) Neugut AI. Epidemiology of gastric cancer. World J Gastroenterol 12:354–362

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lauren P (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 64:31–49

    Article  CAS  PubMed  Google Scholar 

  4. Ekstrom AM, Hansson LE, Signorello LB, Lindgren A, Bergstrom R, Nyren O (2000) Decreasing incidence of both major histologic subtypes of gastric adenocarcinoma-a population-based study in Sweden. Br J Cancer 83:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Henson DE, Dittus C, Younes M, Nguyen H, Albores-Saavedra J (2004) Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973-2000: increase in the signet ring cell type. Arch Pathol Lab Med 128:765–770

    PubMed  Google Scholar 

  6. Kattan MW, Karpeh MS, Mazumdar M, Brennan MF (2003) Postoperative nomogram for disease-specific survival after an R0 resection for gastric carcinoma. J Clin Oncol 21:3647–3650

    Article  PubMed  Google Scholar 

  7. Stone J, Bevan S, Cunningham D, Hill A, Rahman N, Peto J, Marossy A, Houlston RS (1999) Low frequency of germline E-cadherin mutations in familial and nonfamilial gastric cancer. Br J Cancer 79:1935–1937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, Taite H, Scoular R, Miller A, Reeve AE (1998) E-cadherin germline mutations in familial gastric cancer. Nature 392:402–405

    Article  CAS  PubMed  Google Scholar 

  9. Becker KF, Atkinson MJ, Reich U, Becker I, Nekarda H, Siewert JR, Höfler H (1994) E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res 54:3845–3852

    CAS  PubMed  Google Scholar 

  10. Tamura G, Yin J, Wang S, Fleisher AS, Zou T, Abraham JM, Kong D, Smolinski KN, Wilson KT, James SP, Silverberg SG, Nishizuka S, Terashima M, Motoyama T, Meltzer SJ (2000) E-cadherin gene promoter hypermethylation in primary human gastric carcinomas. J Natl Cancer Inst 92:569–573

    Article  CAS  PubMed  Google Scholar 

  11. Machado JC, Oliveira C, Carvalho R, Soares P, Berx G, Caldas C, Seruca R, Carneiro F, Sobrinho-Simöes M (2001) E-cadherin gene (CDH1) promoter methylation as the second hit in sporadic diffuse gastric carcinoma. Oncogene 20:1525–1528

    Article  CAS  PubMed  Google Scholar 

  12. Blair V, Martin I, Shaw D, Winship I, Kerr D, Arnold J, Harawira P, McLeod M, Parry S, Charlton A, Findlay M, Cox B, Humar B, More H, Guilford P (2006) Hereditary diffuse gastric cancer: diagnosis and management. Clin Gastroenterol Hepatol 4:262–275

    Article  CAS  PubMed  Google Scholar 

  13. Humar B, Fukuzawa R, Blair V, Dunbier A, More H, Charlton A, , Kim WH, Reeve AE, Martin I, Guilford P (2007) Destabilized adhesion in the gastric proliferative zone and c-Src kinase activation mark the development of early diffuse gastric cancer. Cancer Res 67: 2480–2489

    Article  CAS  PubMed  Google Scholar 

  14. Le Borgne R, Bellaiche Y, Schweisguth F (2002) Drosophila E-cadherin regulates the orientation of asymmetric cell division in the sensory organ lineage. Curr Biol 12:95–104

    Article  PubMed  Google Scholar 

  15. Schluter MA, Pfarr CS, Pieczynski J, Whiteman EL, Hurd TW, Fan S, Liu CJ, Margolis B (2009) Trafficking of Crumbs3 during cytokinesis is crucial for lumen formation. Mol Biol Cell 20(22):4652–4663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stehbens SJ, Akhmanova A, Yap AS (2009) Microtubules and cadherins: aneglected partnership. Front Biosci 14:3159–3167

    Article  CAS  Google Scholar 

  17. Nasri S, Anjomshoaa A, Song S, Guilford P, McNoe L, Black M, Phillips V, Reeve A, Humar B (2010) Oligonucleotide array outperforms SNP array on formalin-fixed paraffin-embedded clinical samples. Cancer Genet Cytogenet 198(1):1–6

    Article  CAS  PubMed  Google Scholar 

  18. Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74(368):829–836

    Article  Google Scholar 

  19. van Dijk MC, Rombout PD, Boots-Sprenger SH, Straatman H, Bernsen MR, Ruiter DJ, Jeuken JW (2005) Multiplex ligation-dependent probe amplification for the detection of chromosomal gains and losses in formalin-fixed tissue. Diagn Mol Pathol 14(1):9–16

    Article  PubMed  Google Scholar 

  20. Sarai A, Mazur J, Nussinov R, Jernigan RL (1989) Sequence dependence of DNA conformational flexibility. Biochem 28(19):7842–7849

    Article  CAS  Google Scholar 

  21. Mishmar D, Rahat A, Scherer SW, Nyakatura G, Hinzmann B, Kohwi Y, Mandel-Gutfroind Y, Lee JR, Drescher B, Sas DE, Margalit H (1998) Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc Natl Acad Sci U S A 95:8141–8146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Humar B, Guilford P (2009) Hereditary diffuse gastric cancer: a manifestation of lost cell polarity. Cancer Sci 100(7):1151–1157

    Article  CAS  PubMed  Google Scholar 

  23. Mimata A, Fukamachi H, Eishi Y, Yuasa Y (2011) Loss of E-cadherin in mouse gastric epithelial cells induces signet ring-like cells, a possible precursor lesion of diffuse gastric cancer. Cancer Sci 102(5):942–950

    Article  CAS  PubMed  Google Scholar 

  24. Thoma CR, Toso A, Gutbrodt KL, Reggi SP, Frew IJ, Schraml P, Hergovich A, Moch H, Meraldi P, Krek W (2009) VHL loss causes spindle misorientation and chromosome instability. Nature Cell Biol 11(8):994–1001

    Article  CAS  PubMed  Google Scholar 

  25. Little SE, Vuononvirta R, Reis-Filho JS, Natrajan R, Iravani M, Fenwick K, Mackay A, Ashworth A, Pritchard-Jones K, Jones C (2006) Array CGH using whole genome amplification of fresh-frozen and formalin-fixed, paraffin-embedded tumor DNA. Genomics 87(2):298–306

    Article  CAS  PubMed  Google Scholar 

  26. Mc Sherry EA, Mc Goldrick A, Kay EW, Hopkins AM, Gallagher WM, Dervan PA (2007) Formalin-fixed paraffin-embedded clinical tissues show spurious copy number changes in array-CGH profiles. Clin Genet 72(5):441–447

    Article  CAS  PubMed  Google Scholar 

  27. Talseth-Palmer BA, Bowden NA, Hill A, Meldrum C, Scott RJ (2008) Whole genome amplification and its impact on CGH array profiles. BMC Res Notes 1(1):56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. De Smith AJ, Tsalenko A, Sampas N, Scheffer A, Yamada NA, Tsang P, Ben-Dor A, Yakhini Z, Ellis RJ, Bruhn L, Laderman S (2007) Array CGH analysis of copy number variation identifies 1284 new genes variant in healthy white males: implications for association studies of complex diseases. Hum Mol Genet 16(23):2783–2794

    Article  CAS  PubMed  Google Scholar 

  29. Brunet A, Armengol L, Heine D, Rosell J, García-Aragonés M, Gabau E, Estivill X, Guitart M (2009) BAC array CGH in patients with Velocardiofacial syndrome-like features reveals genomic aberrations on chromosome region 1q21. 1. BMC Med Genet 10(1):144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ambros IM, Brunner B, Aigner G, Bedwell C, Beiske K, Bénard J, Bown N, Combaret V, Couturier J, Defferrari R, Gross N (2011) A multilocus technique for risk evaluation of patients with neuroblastoma. Clin Cancer Res 17(4):792–804

    Article  CAS  PubMed  Google Scholar 

  31. Shen Y, Wu BL (2009) Microarray-based genomic DNA profiling technologies in clinical molecular diagnostics. Clin Chem 55(4):659–669

    Article  CAS  PubMed  Google Scholar 

  32. Hills A, Ahn JW, Donaghue C, Thomas H, Mann K, Ogilvie CM (2010) MLPA for confirmation of array CGH results and determination of inheritance. Mol Cytogen 3(1):19

    Article  Google Scholar 

  33. Cook JG (2009) Replication licensing and the DNA damage checkpoint. Front Biosci (Landmark edition) 14:5013

    Article  CAS  Google Scholar 

  34. Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421(6922):499–506

    Article  CAS  PubMed  Google Scholar 

  35. Abraham RT (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15(17):2177–2196

    Article  CAS  PubMed  Google Scholar 

  36. Kumagai A, Dunphy WG (2006) How cells activate ATR. Cell Cycle 5(12):1265–1268

    Article  CAS  PubMed  Google Scholar 

  37. Casper AM, Durkin SG, Arlt MF, Glover TW (2004) Chromosomal instability at common fragile sites in Seckel syndrome. Am J Hum Genet 75(4):654–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Durkin SG, Glover TW (2007) Chromosome fragile sites. Annu Rev Genet 41:169–192

    Article  CAS  PubMed  Google Scholar 

  39. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by HS and JC Anderson Charitable Trust and the Health Research Council of New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naghmeh Gholipour.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasri, S., Humara, B., Anjomshoaa, A. et al. Early Hereditary Diffuse Gastric Cancer (eHDGC) is Characterized by Subtle Genomic Instability and Active DNA Damage Response. Pathol. Oncol. Res. 25, 711–721 (2019). https://doi.org/10.1007/s12253-018-0547-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-018-0547-9

Keywords

Navigation