Skip to main content

Advertisement

Log in

Radiation Therapy Reduced Blood Levels of LDH, HIF-1α, and miR-210 in OSCC

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Radiation Therapy (RT) is a treatment option for a large number of neoplasias. However, the effect of RT on the level of hypoxia markers is poorly understood. The present study aimed to investigate the effect of RT on the levels of hypoxic markers in Oral squamous cell carcinoma (OSCC). Evaluation of HIF-1α and miR-210 levels in OSCC was performed. Then a proteomic analysis was performed to identify candidate hypoxic targets of RT. To validate proteomic studies, the effect of RT on HIF-1α, miR-210, PDH-A and LDH-A levels under hypoxia was assessed by qRT-PCR. The impact of RT in hypoxia markers was evaluated in patients to confirm in vitro results. An increase in the HIF-1α levels was observed in OSCC. RT reduced OSCC cell proliferation and migration. Interestingly, hypoxia could revert the effect of radiation on OSCC phenotype. However, proteomics analyses suggested that LDH is one of the critical targets of RT even in hypoxia. Moreover, RT decreased HIF-1α, miR-210, and LDH even in hypoxia. The current study demonstrated that hypoxia could revert the effects of RT in the OSCC context. However, RT reduces the levels HIF-1α, miR-210 and LDH in vivo and in vitro. The consequences of RT in blood should be carefully investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: HIF-1α and miR-210 expression in patients with OSCC primary lesion.
Fig. 2: Effect of Radiation and hypoxia in OSCC migration and death under hypoxic conditions.
Fig. 3: Proteomic analyses.
Fig. 4: Effect of radiation and hypoxia on HIF-1α, miR-210, LDH and PDH levels in OSCC cells.
Fig. 5: HIF-1α, miR-210 and LDH expression systemic in patients with OSCC submitted to radiotherapy.

Similar content being viewed by others

References

  1. Zhang S, Tian L, Ma P, Sun Q, Zhang K (2015) GuanchaoWang, et al. potential role of differentially expressed lncRNAs in the pathogenesis of oral squamous cell carcinoma. Arch Oral Biol 60(10):1581–1587

    Article  CAS  PubMed  Google Scholar 

  2. Gupta A, Baxi S, Hoyne C (2017) Assessing feasibility, compliance and toxicity of concomitant chemo-radiotherapy in head and neck cancers in the Northern Territory: initial experience and challenges. J Med Radiat Sci 64(2):131–137

    Article  PubMed  Google Scholar 

  3. Fraga CA, de Oliveira MV, de Oliveira ES, Barros LO, Santos FB, Gomez RS et al (2012) A high HIF-1alpha expression genotype is associated with poor prognosis of upper aerodigestive tract carcinoma patients. Oral Oncol 48(2):130–135

    Article  CAS  PubMed  Google Scholar 

  4. Gruber G, Greiner RH, Hlushchuk R, Aebersold DM, Altermatt HJ, Berclaz G, Djonov V (2004) Hypoxia-inducible factor 1 alpha in high-risk breast cancer: an independent prognostic parameter? Breast Cancer Res : BCR 6(3):R191–R198

    Article  CAS  PubMed  Google Scholar 

  5. Thongchot S, Yongvanit P, Loilome W, Seubwai W, Phunicom K, Tassaneeyakul W, Pairojkul C, Promkotra W, Techasen A, Namwat N (2014) High expression of HIF-1alpha, BNIP3 and PI3KC3: hypoxia-induced autophagy predicts cholangiocarcinoma survival and metastasis. Asian Pacific journal of Cancer Prevention : APJCP 15(14):5873–5878

    Article  PubMed  Google Scholar 

  6. Warnakulasuriya S (2009) Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 45(4–5):309–316

    Article  PubMed  Google Scholar 

  7. Stelzle F, Knipfer C, Schuster M, Bocklet T, Nöth E, Adler W, Schempf L, Vieler P, Riemann M, Neukam FW, Nkenke E (2013) Factors influencing relative speech intelligibility in patients with oral squamous cell carcinoma: a prospective study using automatic, computer-based speech analysis. Int J Oral Maxillofac Surg 42(11):1377–1384

    Article  CAS  PubMed  Google Scholar 

  8. Nordsmark M, Bentzen SM, Rudat V, Brizel D, Lartigau E, Stadler P, Becker A, Adam M, Molls M, Dunst J, Terris DJ, Overgaard J (2005) Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. Radiother Oncol 77(1):18–24

    Article  PubMed  Google Scholar 

  9. Barker HE, Paget JT, Khan AA, Harrington KJ (2015) The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 15(7):409–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guimaraes TA, Farias LC, Santos ES, de Carvalho Fraga CA, Orsini LA, de Freitas TL et al (2016) Metformin increases PDH and suppresses HIF-1alpha under hypoxic conditions and induces cell death in oral squamous cell carcinoma. Oncotarget 7(34):55057–55068

    Article  PubMed  PubMed Central  Google Scholar 

  11. Otto AM (2016) Warburg effect(s)—a biographical sketch of Otto Warburg and his impacts on tumor metabolism. Cancer Metab 4(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  12. Luc R, Tortorella SM, Ververis K, Karagiannis TC (2015) Lactate as an insidious metabolite due to the Warburg effect. Mol Biol Rep 42(4):835–840

    Article  CAS  PubMed  Google Scholar 

  13. Loeffelbein DJ, Eiber M, Mayr P, Souvatzoglou M, Mucke T, von Bomhard A et al (2015) Loco-regional recurrence after surgical treatment of oral squamous cell carcinoma: proposals for follow-up imaging based on literature, national guidelines and institutional experience. J Craniomaxillofac Surg 43(8):1546–1552

    Article  CAS  PubMed  Google Scholar 

  14. Allison SJ, Knight JR, Granchi C, Rani R, Minutolo F, Milner J et al (2014) Identification of LDH-A as a therapeutic target for cancer cell killing via (i) p53/NAD(H)-dependent and (ii) p53-independent pathways. Oncogene 3:e102

    Article  CAS  Google Scholar 

  15. Read JA, Winter VJ, Eszes CM, Sessions RB, Brady RL (2001) Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins 43(2):175–185

    Article  CAS  PubMed  Google Scholar 

  16. Fantin VR, St-Pierre J, Leder P (2006) Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9(6):425–434

    Article  CAS  PubMed  Google Scholar 

  17. Semenza GL (1999) Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:551–578

    Article  CAS  PubMed  Google Scholar 

  18. de Carvalho Fraga CA, Alves LR, Marques-Silva L, de Sousa AA, Jorge AS, de Jesus SF et al (2013) High HIF-1alpha expression genotypes in oral lichen planus. Clin Oral Investig 17(9):2011–2015

    Article  PubMed  Google Scholar 

  19. Hoffmann AC, Mori R, Vallbohmer D, Brabender J, Drebber U, Baldus SE, Klein E, Azuma M, Metzger R, Hoffmann C, Hoelscher AH, Danenberg KD, Prenzel KL, Danenberg PV (2008) High expression of heparanase is significantly associated with dedifferentiation and lymph node metastasis in patients with pancreatic ductal adenocarcinomas and correlated to PDGFA and via HIF1a to HB-EGF and bFGF. J Gastrointest Surg 12(10):1674–1681 discussion 81-2

    Article  PubMed  Google Scholar 

  20. Tuomisto A, Garcia-Solano J, Sirnio P, Vayrynen J, Perez-Guillermo M, Makinen MJ et al (2016) HIF-1alpha expression and high microvessel density are characteristic features in serrated colorectal cancer. Virchows Arch 469(4):395–404

    Article  CAS  PubMed  Google Scholar 

  21. van der Groep P, Bouter A, Menko FH, van der Wall E, van Diest PJ (2008) High frequency of HIF-1α overexpression in BRCA1 related breast cancer. Breast Cancer Res Treat 111(3):475–480

    Article  CAS  PubMed  Google Scholar 

  22. Aebersold DM, Burri P, Beer KT, Laissue J, Djonov V, Greiner RH, Semenza GL (2001) Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res 61(7):2911–2916

    CAS  PubMed  Google Scholar 

  23. Silva P, Slevin NJ, Sloan P, Valentine H, Cresswell J, Ryder D, Price P, Homer JJ, West CML (2008) Prognostic significance of tumor hypoxia inducible factor-1alpha expression for outcome after radiotherapy in oropharyngeal cancer. Int J Radiat Oncol Biol Phys 72(5):1551–1559

    Article  CAS  PubMed  Google Scholar 

  24. Langhammer S, Najjar M, Hess-Stumpp H, Thierauch KH (2011) LDH-A influences hypoxia-inducible factor 1alpha (HIF1 alpha) and is critical for growth of HT29 colon carcinoma cells in vivo. Target Oncol 6(3):155–162

    Article  PubMed  Google Scholar 

  25. Pouyssegur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441(7092):437–443

    Article  CAS  PubMed  Google Scholar 

  26. Karatas OF, Suer I, Yuceturk B, Yilmaz M, Oz B, Guven G et al (2016) Identification of microRNA profile specific to cancer stem-like cells directly isolated from human larynx cancer specimens. BMC Cancer 16(1):853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K et al (2011) miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 18(3):465–478

    Article  CAS  PubMed  Google Scholar 

  28. Camps C, Buffa FM, Colella S, Moore J, Sotiriou C, Sheldon H, Harris AL, Gleadle JM, Ragoussis J (2008) Hsa-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res 14(5):1340–1348

    Article  CAS  PubMed  Google Scholar 

  29. Gee HE, Camps C, Buffa FM, Patiar S, Winter SC, Betts G, Homer J, Corbridge R, Cox G, West CM, Ragoussis J, Harris AL (2010) Hsa-mir-210 is a marker of tumor hypoxia and a prognostic factor in head and neck cancer. Cancer 116(9):2148–2158

    PubMed  Google Scholar 

  30. Fasanaro P, D'Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G et al (2008) MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 283(23):15878–15883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93(4):266–276

    Article  CAS  PubMed  Google Scholar 

  32. Okunieff P, Hoeckel M, Dunphy EP, Schlenger K, Knoop C, Vaupel P (1993) Oxygen tension distributions are sufficient to explain the local response of human breast tumors treated with radiation alone. Int J Radiat Oncol Biol Phys 26(4):631–636

    Article  CAS  PubMed  Google Scholar 

  33. Yang X, Zhu H, Ge Y, Liu J, Cai J, Qin Q, Zhan L, Zhang C, Xu L, Liu Z, Yang Y, Yang Y, Ma J, Cheng H, Sun X (2014) Melittin enhances radiosensitivity of hypoxic head and neck squamous cell carcinoma by suppressing HIF-1alpha. Tumor Biol 35(10):10443–10448

    Article  CAS  Google Scholar 

  34. Moeller BJ, Dreher MR, Rabbani ZN, Schroeder T, Cao Y, Li CY, Dewhirst MW (2005) Pleiotropic effects of HIF-1 blockade on tumor radiosensitivity. Cancer Cell 8(2):99–110

    Article  CAS  PubMed  Google Scholar 

  35. Liu J, Zhang J, Wang X, Li Y, Chen Y, Li K, Zhang J, Yao L, Guo G (2010) HIF-1 and NDRG2 contribute to hypoxia-induced radioresistance of cervical cancer Hela cells. Exp Cell Res 316(12):1985–1993

    Article  CAS  PubMed  Google Scholar 

  36. Dong G, Chen Q, Jiang F, Yu D, Mao Q, Xia W, Shi R, Wang J, Xu L (2016) Diisopropylamine dichloroacetate enhances radiosensitization in esophageal squamous cell carcinoma by increasing mitochondria-derived reactive oxygen species levels. Oncotarget 7(42):68170–68178

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lall R, Ganapathy S, Yang M, Xiao S, Xu T, Su H, Shadfan M, Asara JM, Ha CS, Ben-Sahra I, Manning BD, Little JB, Yuan ZM (2014) Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response. Cell Death Differ 21(5):836–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386

    Article  CAS  Google Scholar 

  39. Rosner B (2011) Fundamentals of biostatistics. Brooks/Cole, Cengage Learning, Boston

    Google Scholar 

  40. Katabi N, Lewis JS (2017) Update from the 4th edition of the World Health Organization classification of head and neck Tumours: what is new in the 2017 WHO blue book for tumors and tumor-like lesions of the neck and lymph nodes. Head Neck Pathol 11(1):48–54

    Article  PubMed  PubMed Central  Google Scholar 

  41. El-Naggar AK, Chan JKC, Grandis JR, Takata T (2017) Slootweg PJ. WHO Classification of Head and Neck Tumours, International Agency for Research on Cancer

    Google Scholar 

  42. Guimaraes TA, Farias LC, Fraga CA, Feltenberger JD, Melo GA, Coletta RD, Souza Santos SH, de Paula AMB, Guimaraes AL (2016) Evaluation of the antineoplastic activity of gallic acid in oral squamous cell carcinoma under hypoxic conditions. Anti-Cancer Drugs 27(5):407–416

    Article  CAS  PubMed  Google Scholar 

  43. Helman LJ, Gazdar AF, Park JG, Cohen PS, Cotelingam JD, Israel MA (1988) Chromogranin a expression in normal and malignant human tissues. J Clin Invest 82(2):686–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Domingos PLB, Souza MG, Guimaraes TA, Santos ES, Farias LC, de Carvalho Fraga CA et al (2017) Hypoxia reduces the E-cadherin expression and increases OSCC cell migration regardless of the E-cadherin methylation profile. Pathol Res Pract 213(5):496–501

    Article  CAS  PubMed  Google Scholar 

  45. Aragao AZ, Belloni M, Simabuco FM, Zanetti MR, Yokoo S, Domingues RR et al (2012) Novel processed form of syndecan-1 shed from SCC-9 cells plays a role in cell migration. PLoS One 7(8):e43521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xia J, Wishart DS (2010) MSEA: a web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res 38(Web Server issue):W71–W77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xia J, Sinelnikov IV, Han B, Wishart DS (2015) MetaboAnalyst 3.0--making metabolomics more meaningful. Nucleic Acids Res 43(W1):W251–W257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vaupel P, Harrison L (2004) Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 9(Suppl 5):4–9

    Article  PubMed  Google Scholar 

  49. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Meth 9(7):671–675

    Article  CAS  Google Scholar 

  50. Mithani SK, Mydlarz WK, Grumbine FL, Smith IM, Califano JA (2007) Molecular genetics of premalignant oral lesions. Oral Dis 13(2):126–133

    Article  CAS  PubMed  Google Scholar 

  51. Speksnijder CM, van der Glas HW, van der Bilt A, van Es RJ, van der Rijt E, Koole R (2010) Oral function after oncological intervention in the oral cavity: a retrospective study. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 68(6):1231–1237

    Article  Google Scholar 

  52. Coutinho-Camillo CM, Lourenco SV, de Araujo LL, Kowalski LP, Soares FA (2015) Expression of apoptosis-regulating miRNAs and target mRNAs in oral squamous cell carcinoma. Cancer Genet 208(7–8):382–389

    Article  CAS  PubMed  Google Scholar 

  53. Scapoli L, Palmieri A, Lo Muzio L, Pezzetti F, Rubini C, Girardi A et al (2010) MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int J Immunopathol Pharmacol 23(4):1229–1234

    Article  CAS  PubMed  Google Scholar 

  54. Golias T, Papandreou I, Sun R, Kumar B, Brown NV, Swanson BJ, Pai R, Jaitin D, le QT, Teknos TN, Denko NC (2016) Hypoxic repression of pyruvate dehydrogenase activity is necessary for metabolic reprogramming and growth of model tumours. Sci Rep 6:31146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3(3):187–197

    Article  CAS  PubMed  Google Scholar 

  56. De Saedeleer CJ, Copetti T, Porporato PE, Verrax J, Feron O, Sonveaux P (2012) Lactate activates HIF-1 in oxidative but not in Warburg-phenotype human tumor cells. PLoS One 7(10):e46571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saito K, Matsumoto S, Takakusagi Y, Matsuo M, Morris HD, Lizak MJ, Munasinghe JP, Devasahayam N, Subramanian S, Mitchell JB, Krishna MC (2015) 13C-MR spectroscopic imaging with hyperpolarized [1-13C]pyruvate detects early response to radiotherapy in SCC tumors and HT-29 tumors. Clinical cancer research : an official journal of the American Association for Cancer Research 21(22):5073–5081

    Article  CAS  Google Scholar 

  58. Hosokawa Y, Okumura K, Terashima S, Sakakura Y (2012) Radiation protective effect of hypoxia-inducible factor-1alpha (HIF-1alpha) on human oral squamous cell carcinoma cell lines. Radiat Prot Dosimetry 152(1–3):159–163

    Article  CAS  PubMed  Google Scholar 

  59. Leung E, Cairns RA, Chaudary N, Vellanki RN, Kalliomaki T, Moriyama EH, Mujcic H, Wilson BC, Wouters BG, Hill R, Milosevic M (2017) Metabolic targeting of HIF-dependent glycolysis reduces lactate, increases oxygen consumption and enhances response to high-dose single-fraction radiotherapy in hypoxic solid tumors. BMC Cancer 17(1):418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koukourakis MI, Giatromanolaki A (2018) Warburg effect, lactate dehydrogenase, and radio/chemo-therapy efficacy. Int J Radiat Biol:1–19. https://doi.org/10.1080/09553002.2018.1490041

  61. Jackson SP, Bartek J (2009) The DNA-damage response in human biology and disease. Nature 461(7267):1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58(3):862–870

    Article  PubMed  Google Scholar 

  63. Le A, Cooper CR, Gouw AM, Dinavahi R, Maitra A, Deck LM et al (2010) Inhibition of lactate dehydrogenase a induces oxidative stress and inhibits tumor progression. Proc Natl Acad Sci U S A 107(5):2037–2042

    Article  PubMed  PubMed Central  Google Scholar 

  64. Serganova I, Cohen IJ, Vemuri K, Shindo M, Maeda M, Mane M, Moroz E, Khanin R, Satagopan J, Koutcher JA, Blasberg R (2018) LDH-A regulates the tumor microenvironment via HIF-signaling and modulates the immune response. PLoS One 13(9):e0203965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Herskind C, Ma L, Liu Q, Zhang B, Schneider F, Veldwijk MR, Wenz F (2017) Biology of high single doses of IORT: RBE, 5 R's, and other biological aspects. Radiat Oncol 12(1):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S (2009) Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clinical cancer research : an official journal of the American Association for Cancer Research. 15(17):5379–5388

    Article  CAS  Google Scholar 

  67. Golden EB, Chhabra A, Chachoua A, Adams S, Donach M, Fenton-Kerimian M, Friedman K, Ponzo F, Babb JS, Goldberg J, Demaria S, Formenti SC (2015) Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumours: a proof-of-principle trial. Lancet Oncol 16(7):795–803

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the facility Laboratório Nacional de Biociências LNBio CNPEM-Brazil for the mass spectrometry analysis. We want to thank Bianca A. Pauletti in especial for technical assistance in mass spectrometry analysis.

Funding

This study was supported by grants from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais (IFNMG) and the Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG). Dr. Guimarães, Dr. Gomez, Dr. Santos and Dr. de Paula are research fellows of the CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Luiz Sena Guimarães.

Ethics declarations

Conflict of Interest

The authors deny any conflicts of interest related to this study.

Ethical Approval

Ethical approval for this study was obtained from the Institutional Review Board, and a signed informed consent form was obtained from all patients (process number 62425316.0.0000.5146).

Electronic supplementary material

Supplementary table 1

Primer sequences (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, M.G., de Jesus, S.F., Santos, E.M. et al. Radiation Therapy Reduced Blood Levels of LDH, HIF-1α, and miR-210 in OSCC. Pathol. Oncol. Res. 26, 433–442 (2020). https://doi.org/10.1007/s12253-018-0517-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-018-0517-2

Keywords

Navigation