Skip to main content

Advertisement

Log in

Chronic Hyperglycaemia Induced Alterations of Hepatic Stellate Cells Differ from the Effect of TGFB1, and Point toward Metabolic Stress

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

The deleterious effect of hyperglycemia on the biology of the liver is supported by clinical evidence. It can promote the development of fatty liver, liver fibrosis, even liver cancer as complication of diabetes mellitus. As liver fibrosis is the consequence of hepatic stellate cell (HSC) activation, the questions were addressed whether alterations induced by high glucose concentration are directly related to TGFB1 effect, or other mechanisms are activated. In order to obtain information on the response of HSC for high glucose, LX-2 cells (an immortalized human HSC cell lineage) were cultured in 15.3 mM glucose containing medium for 21 days. The effect of glucose was compared to that of TGFB1. Our data revealed that chronic exposure of high glucose concentration initiated profound alteration of LX-2 cells and the effect is different from those observed upon interaction with TGFB1. Whereas TGFB1 induced the production of extracellular matrix proteins, high glucose exposure resulted in decreased MMP2 activity, retardation of type I collagen in the endoplasmic reticulum, with decreased pS6 expression, pointing to development of endoplasmic stress and sequestration of p21CIP1/WAF1 in the cytoplasm which can promote the proliferation of LX2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yokogawa K, Matsui-Yuasa I, Tamura A, Terada M, Kojima-Yuasa A (2011) Inhibitory effects of Ecklonia cava extract on high glucose-induced hepatic stellate cell activation. Mar Drugs 9(12):2793–2808. https://doi.org/10.3390/md9122793

    Article  PubMed  PubMed Central  Google Scholar 

  2. Firneisz G (2014) Non-alcoholic fatty liver disease and type 2 diabetes mellitus: the liver disease of our age? World J Gastroenterol 20(27):9072–9089. https://doi.org/10.3748/wjg.v20.i27.9072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schuppan D, Afdhal NH (2008) Liver cirrhosis. Lancet 371(9615):838–851. https://doi.org/10.1016/S0140-6736(08)60383-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tolman KG, Fonseca V, Dalpiaz A, Tan MH (2007) Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care 30(3):734–743. https://doi.org/10.2337/dc06-1539

    Article  CAS  PubMed  Google Scholar 

  5. Adams LA, Harmsen S, St Sauver JL, Charatcharoenwitthaya P, Enders FB, Therneau T, Angulo P (2010) Nonalcoholic fatty liver disease increases risk of death among patients with diabetes: a community-based cohort study. Am J Gastroenterol 105(7):1567–1573. https://doi.org/10.1038/ajg.2010.18

    Article  PubMed  PubMed Central  Google Scholar 

  6. Picardi A, D'Avola D, Gentilucci UV, Galati G, Fiori E, Spataro S, Afeltra A (2006) Diabetes in chronic liver disease: from old concepts to new evidence. Diabetes Metab Res Rev 22(4):274–283. https://doi.org/10.1002/dmrr.636

    Article  CAS  PubMed  Google Scholar 

  7. Paradis V, Perlemuter G, Bonvoust F, Dargere D, Parfait B, Vidaud M, Conti M, Huet S, Ba N, Buffet C, Bedossa P (2001) High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: a potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology 34(4 Pt 1):738–744. https://doi.org/10.1053/jhep.2001.28055

    Article  CAS  PubMed  Google Scholar 

  8. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414(6865):813–820. https://doi.org/10.1038/414813a

    Article  CAS  PubMed  Google Scholar 

  9. Neyrinck AM, Cani PD, Dewulf EM, De Backer F, Bindels LB, Delzenne NM (2009) Critical role of Kupffer cells in the management of diet-induced diabetes and obesity. Biochem Biophys Res Commun 385(3):351–356. https://doi.org/10.1016/j.bbrc.2009.05.070

    Article  CAS  PubMed  Google Scholar 

  10. Friedman SL (2000) Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 275(4):2247–2250

    Article  CAS  Google Scholar 

  11. Knittel T, Janneck T, Muller L, Fellmer P, Ramadori G (1996) Transforming growth factor beta 1-regulated gene expression of Ito cells. Hepatology 24(2):352–360. https://doi.org/10.1053/jhep.1996.v24.pm0008690404

    Article  CAS  PubMed  Google Scholar 

  12. Knittel T, Schuppan D, Meyer zum Buschenfelde KH, Ramadori G (1992) Differential expression of collagen types I, III, and IV by fat-storing (Ito) cells in vitro. Gastroenterology 102(5):1724–1735

    Article  CAS  Google Scholar 

  13. Lanthier N, Horsmans Y, Leclercq IA (2009) The metabolic syndrome: how it may influence hepatic stellate cell activation and hepatic fibrosis. Curr Opin Clin Nutr Metab Care 12(4):404–411. https://doi.org/10.1097/MCO.0b013e32832c7819

    Article  CAS  PubMed  Google Scholar 

  14. Kiss K, Baghy K, Spisak S, Szanyi S, Tulassay Z, Zalatnai A, Lohr JM, Jesenofsky R, Kovalszky I, Firneisz G (2015) Chronic hyperglycemia induces trans-differentiation of human pancreatic stellate cells and enhances the malignant molecular communication with human pancreatic cancer cells. PLoS One 10(5):e0128059. https://doi.org/10.1371/journal.pone.0128059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu L, Hui AY, Albanis E, Arthur MJ, O'Byrne SM, Blaner WS, Mukherjee P, Friedman SL, Eng FJ (2005) Human hepatic stellate cell lines, LX-1 and LX-2: new tools for analysis of hepatic fibrosis. Gut 54(1):142–151. https://doi.org/10.1136/gut.2004.042127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  17. Moreira RK (2007) Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med 131(11):1728–1734. https://doi.org/10.1043/1543-2165(2007)131[1728:HSCALF]2.0.CO;2

  18. Yin C, Evason KJ, Asahina K, Stainier DY (2013) Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 123(5):1902–1910. https://doi.org/10.1172/JCI66369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kordes C, Sawitza I, Gotze S, Herebian D, Haussinger D (2014) Hepatic stellate cells contribute to progenitor cells and liver regeneration. J Clin Invest 124(12):5503–5515. https://doi.org/10.1172/JCI74119

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li JT, Liao ZX, Ping J, Xu D, Wang H (2008) Molecular mechanism of hepatic stellate cell activation and antifibrotic therapeutic strategies. J Gastroenterol 43(6):419–428. https://doi.org/10.1007/s00535-008-2180-y

    Article  CAS  PubMed  Google Scholar 

  21. Friedman SL (2010) Evolving challenges in hepatic fibrosis. Nat Rev Gastroenterol Hepatol 7(8):425–436. https://doi.org/10.1038/nrgastro.2010.97

    Article  PubMed  Google Scholar 

  22. Markiewski MM, DeAngelis RA, Lambris JD (2006) Liver inflammation and regeneration: two distinct biological phenomena or parallel pathophysiologic processes? Mol Immunol 43(1–2):45–56. https://doi.org/10.1016/j.molimm.2005.06.019

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Compean D, Jaquez-Quintana JO, Gonzalez-Gonzalez JA, Maldonado-Garza H (2009) Liver cirrhosis and diabetes: risk factors, pathophysiology, clinical implications and management. World J Gastroenterol 15(3):280–288

    Article  CAS  Google Scholar 

  24. Hong F, Tuyama A, Lee TF, Loke J, Agarwal R, Cheng X, Garg A, Fiel MI, Schwartz M, Walewski J, Branch A, Schecter AD, Bansal MB (2009) Hepatic stellate cells express functional CXCR4: role in stromal cell-derived factor-1alpha-mediated stellate cell activation. Hepatology 49(6):2055–2067. https://doi.org/10.1002/hep.22890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saiman Y, Jiao J, Fiel MI, Friedman SL, Aloman C, Bansal MB (2015) Inhibition of the CXCL12/CXCR4 chemokine axis with AMD3100, a CXCR4 small molecule inhibitor, worsens murine hepatic injury. Hepatol Res 45(7):794–803. https://doi.org/10.1111/hepr.12411

    Article  CAS  PubMed  Google Scholar 

  26. Tsai WC, Liang FC, Cheng JW, Lin LP, Chang SC, Chen HH, Pang JH (2013) High glucose concentration up-regulates the expression of matrix metalloproteinase-9 and -13 in tendon cells. BMC Musculoskelet Disord 14:255. https://doi.org/10.1186/1471-2474-14-255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim ES, Kim MS, Moon A (2004) TGF-beta-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol 25(5):1375–1382

    CAS  PubMed  Google Scholar 

  28. Nakagawa T, Lan HY, Glushakova O, Zhu HJ, Kang DH, Schreiner GF, Bottinger EP, Johnson RJ, Sautin YY (2005) Role of ERK1/2 and p38 mitogen-activated protein kinases in the regulation of thrombospondin-1 by TGF-beta1 in rat proximal tubular cells and mouse fibroblasts. J Am Soc Nephrol 16(4):899–904. https://doi.org/10.1681/ASN.2004080689

    Article  CAS  PubMed  Google Scholar 

  29. Hugo C (2003) The thrombospondin 1-TGF-beta axis in fibrotic renal disease. Nephrol Dial Transplant 18(7):1241–1245

    Article  CAS  Google Scholar 

  30. Friedman SL (2008) Mechanisms of hepatic fibrogenesis. Gastroenterology 134(6):1655–1669. https://doi.org/10.1053/j.gastro.2008.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vincent EE, Elder DJ, Thomas EC, Phillips L, Morgan C, Pawade J, Sohail M, May MT, Hetzel MR, Tavare JM (2011) Akt phosphorylation on Thr308 but not on Ser473 correlates with Akt protein kinase activity in human non-small cell lung cancer. Br J Cancer 104(11):1755–1761. https://doi.org/10.1038/bjc.2011.132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bergmann C, Akhmetshina A, Dees C, Palumbo K, Zerr P, Beyer C, Zwerina J, Distler O, Schett G, Distler JH (2011) Inhibition of glycogen synthase kinase 3beta induces dermal fibrosis by activation of the canonical Wnt pathway. Ann Rheum Dis 70(12):2191–2198. https://doi.org/10.1136/ard.2010.147140

    Article  CAS  PubMed  Google Scholar 

  33. Dooley S, ten Dijke P (2012) TGF-beta in progression of liver disease. Cell Tissue Res 347(1):245–256. https://doi.org/10.1007/s00441-011-1246-y

    Article  CAS  PubMed  Google Scholar 

  34. Lai WC, Zhou M, Shankavaram U, Peng G, Wahl LM (2003) Differential regulation of lipopolysaccharide-induced monocyte matrix metalloproteinase (MMP)-1 and MMP-9 by p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. J Immunol 170(12):6244–6249

    Article  CAS  Google Scholar 

  35. Singh R, Song RH, Alavi N, Pegoraro AA, Singh AK, Leehey DJ (2001) High glucose decreases matrix metalloproteinase-2 activity in rat mesangial cells via transforming growth factor-beta1. Exp Nephrol 9(4):249–257. https://doi.org/10.1159/000052619

    Article  CAS  PubMed  Google Scholar 

  36. Bujor AM, Pannu J, Bu S, Smith EA, Muise-Helmericks RC, Trojanowska M (2008) Akt blockade downregulates collagen and upregulates MMP1 in human dermal fibroblasts. J Invest Dermatol 128(8):1906–1914. https://doi.org/10.1038/jid.2008.39

    Article  CAS  PubMed  Google Scholar 

  37. Li X, Talts U, Talts JF, Arman E, Ekblom P, Lonai P (2001) Akt/PKB regulates laminin and collagen IV isotypes of the basement membrane. Proc Natl Acad Sci U S A 98(25):14416–14421. https://doi.org/10.1073/pnas.251547198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Danne T, Spiro MJ, Spiro RG (1993) Effect of high glucose on type IV collagen production by cultured glomerular epithelial, endothelial, and mesangial cells. Diabetes 42(1):170–177

    Article  CAS  Google Scholar 

  39. Son G, Hines IN, Lindquist J, Schrum LW, Rippe RA (2009) Inhibition of phosphatidylinositol 3-kinase signaling in hepatic stellate cells blocks the progression of hepatic fibrosis. Hepatology 50(5):1512–1523. https://doi.org/10.1002/hep.23186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee SJ, Seo KW, Kim CD (2015) LPS increases 5-LO expression on monocytes via an activation of Akt-Sp1/NF-kappaB pathways. Korean J Physiol Pharmacol 19(3):263–268. https://doi.org/10.4196/kjpp.2015.19.3.263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Du K, Montminy M (1998) CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem 273(49):32377–32379

    Article  CAS  Google Scholar 

  42. Patel S, Santani D (2009) Role of NF-kappa B in the pathogenesis of diabetes and its associated complications. Pharmacol Rep 61(4):595–603

    Article  CAS  Google Scholar 

  43. Suzuki A, Tsutomi Y, Akahane K, Araki T, Miura M (1998) Resistance to Fas-mediated apoptosis: activation of caspase 3 is regulated by cell cycle regulator p21WAF1 and IAP gene family ILP. Oncogene 17(8):931–939. https://doi.org/10.1038/sj.onc.1202021

    Article  CAS  PubMed  Google Scholar 

  44. Zhou BP, Liao Y, Xia W, Spohn B, Lee MH, Hung MC (2001) Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat Cell Biol 3(3):245–252. https://doi.org/10.1038/35060032

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Dowbenko D, Lasky LA (2002) AKT/PKB phosphorylation of p21Cip/WAF1 enhances protein stability of p21Cip/WAF1 and promotes cell survival. J Biol Chem 277(13):11352–11361. https://doi.org/10.1074/jbc.M109062200

    Article  CAS  PubMed  Google Scholar 

  46. Tam AB, Mercado EL, Hoffmann A, Niwa M (2012) ER stress activates NF-kappaB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One 7(10):e45078. https://doi.org/10.1371/journal.pone.0045078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Scientific Found (OTKA): 67925, 100904 and 105763. We express our gratitude to professor László Ötvös for the careful reading and correction of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Kovalszky.

Electronic supplementary material

ESM Table 1

Antibodies applied for immuncytochemistry (PNG 63.4 kb)

High resolution image file (EPS 3.63 MB)

ESM Table 2

Antibodies applied for dot blot analysis (PNG 129 kb)

High resolution image file (EPS 3.63 MB)

ESM Table 3

Antibodies applied for Western blot analysis (PNG 222 kb)

High resolution image file (EPS 3.63 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiss, K., Regős, E., Rada, K. et al. Chronic Hyperglycaemia Induced Alterations of Hepatic Stellate Cells Differ from the Effect of TGFB1, and Point toward Metabolic Stress. Pathol. Oncol. Res. 26, 291–299 (2020). https://doi.org/10.1007/s12253-018-0458-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-018-0458-9

Keywords

Navigation