Skip to main content

Advertisement

Log in

Unusual Signal Patterns of Break-apart FISH Probes Used in the Diagnosis of Soft Tissue Sarcomas

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Break-apart FISH probes are the most popular and reliable type of FISH probes used to confirm certain pathological diagnoses. The interpretation is usually easy, however, in some instances it is not so unequivocal. Our aim was to reveal and elucidate the problems occurring in the process of evaluation of the break-apart probe results. Altogether 301 soft tissue sarcomas with confirmed molecular tests using break-apart probes were assessed to reveal the frequency and type of unusual signal pattern. Among 89 synovial sarcoma (SS18) 11%, 12 alveolar rhabdomyosarcoma (FOXO1) 50%, 53 myxoid liposarcoma (DDIT3) 7.5%, 6 low grade fibromyxoid sarcoma (FUS) 67%, 93 Ewing sarcoma (EWSR1) 3%, 12 clear cell sarcoma (EWSR1) 8%, 5 desmoplastic small round cell tumor (EWSR1) 0%, 9 extraskeletal myxoid chondrosarcoma (EWSR1) 0%, 2 myoepithelial carcinoma (EWSR1) 50%, 14 dermatofibrosarcoma protuberans (COL1A1) 86% and 6 nodular fasciitis (USP6) 17% atypical break-apart signals were detected. Despite the unusual signal pattern type, the fusion genes were detected using either metaphase FISH, interphase FISH with translocation/TriCheck probe or RT-PCR methods. Although the interpretation problems in the process to evaluate the break-apart probe results is well known from sporadic case reports, a systemic overview to detect their frequency has not been performed so far. In our work we highlighted the relative frequency of this problem and pinpointed those signal-patterns which, despite their unusual appearance, can still confirm the diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bridge JA (2014) The role of cytogenetics and molecular diagnostics in the diagnosis of soft-tissue tumors. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc 27(Suppl 1):S80–S97. doi:10.1038/modpathol.2013.179

    Article  Google Scholar 

  2. Bridge JA, Cushman-Vokoun AM (2011) Molecular diagnostics of soft tissue tumors. Arch Pathol Lab Med 135(5):588–601. doi:10.1043/2010-0594-rair.1

    CAS  PubMed  Google Scholar 

  3. Fletcher CD, Organization WH, Cancer IAfRo (2013) WHO classification of tumours of soft tissue and bone. IARC press

  4. Ventura RA, Martin-Subero JI, Jones M, McParland J, Gesk S, Mason DY, Siebert R (2006) FISH analysis for the detection of lymphoma-associated chromosomal abnormalities in routine paraffin-embedded tissue. The Journal of molecular diagnostics: JMD 8(2):141–151. doi:10.2353/jmoldx.2006.050083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Romeo S, Dei Tos AP (2010) Soft tissue tumors associated with EWSR1 translocation. Virchows Archiv: an international journal of pathology 456(2):219–234. doi:10.1007/s00428-009-0854-3

    Article  CAS  Google Scholar 

  6. Motoi T, Kumagai A, Tsuji K, Imamura T, Fukusato T (2010) Diagnostic utility of dual-color break-apart chromogenic in situ hybridization for the detection of rearranged SS18 in formalin-fixed, paraffin-embedded synovial sarcoma. Hum Pathol 41(10):1397–1404. doi:10.1016/j.humpath.2010.02.009

    Article  CAS  PubMed  Google Scholar 

  7. Argani P, Aulmann S, Karanjawala Z, Fraser RB, Ladanyi M, Rodriguez MM (2009) Melanotic Xp11 translocation renal cancers: a distinctive neoplasm with overlapping features of PEComa, carcinoma, and melanoma. Am J Surg Pathol 33(4):609–619. doi:10.1097/PAS.0b013e31818fbdff

    Article  PubMed  Google Scholar 

  8. Amary MF, Berisha F, Bernardi Fdel C, Herbert A, James M, Reis-Filho JS, Fisher C, Nicholson AG, Tirabosco R, Diss TC, Flanagan AM (2007) Detection of SS18-SSX fusion transcripts in formalin-fixed paraffin-embedded neoplasms: analysis of conventional RT-PCR, qRT-PCR and dual color FISH as diagnostic tools for synovial sarcoma. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc 20(4):482–496. doi:10.1038/modpathol.3800761

    Article  CAS  Google Scholar 

  9. Matsumura T, Yamaguchi T, Seki K, Shimoda T, Wada T, Yamashita T, Hasegawa T (2008) Advantage of FISH analysis using FKHR probes for an adjunct to diagnosis of rhabdomyosarcomas. Virchows Archiv: an international journal of pathology 452(3):251–258. doi:10.1007/s00428-007-0554-9

    Article  CAS  Google Scholar 

  10. Liu J, Guzman MA, Pezanowski D, Patel D, Hauptman J, Keisling M, Hou SJ, Papenhausen PR, Pascasio JM, Punnett HH, Halligan GE, de Chadarevian JP (2011) FOXO1-FGFR1 fusion and amplification in a solid variant of alveolar rhabdomyosarcoma. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 24(10):1327–1335. doi:10.1038/modpathol.2011.98

    Article  CAS  Google Scholar 

  11. Willmore-Payne C, Holden J, Turner KC, Proia A, Layfield LJ (2008) Translocations and amplifications of chromosome 12 in liposarcoma demonstrated by the LSI CHOP breakapart rearrangement probe. Arch Pathol Lab Med 132(6):952–957. doi:10.1043/1543-2165(2008)132[952:taaoci]2.0.co;2

    PubMed  Google Scholar 

  12. Smith SH, Weiss SW, Jankowski SA, Coccia MA, Meltzer PS (1992) SAS amplification in soft tissue sarcomas. Cancer Res 52(13):3746–3749

    CAS  PubMed  Google Scholar 

  13. Berner JM, Forus A, Elkahloun A, Meltzer PS, Fodstad O, Myklebost O (1996) Separate amplified regions encompassing CDK4 and MDM2 in human sarcomas. Genes Chromosom Cancer 17(4):254–259. doi:10.1002/(sici)1098-2264(199612)17:4<254::aid-gcc7>3.0.co;2-2

    Article  CAS  PubMed  Google Scholar 

  14. Dei Tos AP, Doglioni C, Piccinin S, Sciot R, Furlanetto A, Boiocchi M, Dal Cin P, Maestro R, Fletcher CD, Tallini G (2000) Coordinated expression and amplification of the MDM2, CDK4, and HMGI-C genes in atypical lipomatous tumours. J Pathol 190(5):531–536. doi:10.1002/(sici)1096-9896(200004)190:5<531::aid-path579>3.0.co;2-w

    Article  CAS  PubMed  Google Scholar 

  15. Bartuma H, Moller E, Collin A, Domanski HA, Von Steyern FV, Mandahl N, Mertens F (2010) Fusion of the FUS and CREB3L2 genes in a supernumerary ring chromosome in low-grade fibromyxoid sarcoma. Cancer Genet Cytogenet 199(2):143–146. doi:10.1016/j.cancergencyto.2010.02.011

    Article  CAS  PubMed  Google Scholar 

  16. Chien YC, Karolyi K, Kovacs I (2016) Paravertebral low-grade fibromyxoid sarcoma with supernumerary ring chromosome: case report and literature review. Ann Clin Lab Sci 46(1):90–96

    CAS  PubMed  Google Scholar 

  17. Jinawath N, Morsberger L, Norris-Kirby A, Williams LM, Yonescu R, Argani P, Griffin CA, Murphy KM (2010) Complex rearrangement of chromosomes 1, 7, 21, 22 in Ewing sarcoma. Cancer Genet Cytogenet 201(1):42–47. doi:10.1016/j.cancergencyto.2010.04.021

    Article  CAS  PubMed  Google Scholar 

  18. Szuhai K, IJszenga M, Tanke HJ, Taminiau AH, de Schepper A, van Duinen SG, Rosenberg C, Hogendoorn PC (2007) Detection and molecular cytogenetic characterization of a novel ring chromosome in a histological variant of Ewing sarcoma. Cancer Genet Cytogenet 172(1):12–22. doi:10.1016/j.cancergencyto.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  19. Sirvent N, Maire G, Pedeutour F (2003) Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosom Cancer 37(1):1–19. doi:10.1002/gcc.10202

    Article  CAS  PubMed  Google Scholar 

  20. Chen J, Ye X, Li Y, Wei C, Zheng Q, Zhong P, Wu S, Luo Y, Liao Z, Ye H (2014) Chromosomal translocation involving USP6 gene in nodular fasciitis. Zhonghua bing li xue za zhi = Chinese journal of pathology 43(8):533–536

    CAS  PubMed  Google Scholar 

  21. Geiersbach K, Rector LS, Sederberg M, Hooker A, Randall RL, Schiffman JD, South ST (2011) Unknown partner for USP6 and unusual SS18 rearrangement detected by fluorescence in situ hybridization in a solid aneurysmal bone cyst. Cancer genetics 204(4):195–202. doi:10.1016/j.cancergen.2011.01.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoltán Sápi.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Funding

Hungarian Scientific Research Fund (OTKA), http://www.otka.hu/en, No: K-112993.

Ethics Approval and Consent to Participate

The study protocol was approved by the Ethics and Scientific committee of the participating institution. TUKEB 155/2012

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papp, G., Mihály, D. & Sápi, Z. Unusual Signal Patterns of Break-apart FISH Probes Used in the Diagnosis of Soft Tissue Sarcomas. Pathol. Oncol. Res. 23, 863–871 (2017). https://doi.org/10.1007/s12253-017-0200-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-017-0200-z

Keywords

Navigation