Skip to main content

Advertisement

Log in

Breast- and Salivary Gland-Derived Adenoid Cystic Carcinomas: Potential Post-Transcriptional Divergencies. A Pilot Study Based on miRNA Expression Profiling of Four Cases and Review of the Potential Relevance of the Findings

  • Research
  • Published:
Pathology & Oncology Research

Abstract

Adenoid cystic carcinoma (ACC) is a malignant tumor of the salivary glands but identical tumors can also arise from the breast. Despite their similar histomorphological appearance the salivary gland- and the breast-derived forms differ in their clinical features: while ACC of the salivary glands (sACC) have an agressive clinical course, the breast-derived form (bACC) shows a very favourable clinical outcome. To date no exact molecular alterations have yet been identified which would explain the diverse clinical features of the ACCs of different origin. In our pilot experiment we investigated the post-transcriptional features of ACC cases by performing microRNA-profiling on 2-2 bACC and sACC tissues and on 1-1 normal breast and salivary gland tissue. By comparing the microRNA-profiles of the investigated samples we identified microRNAs which were expressed differently in bACC and sACC cases according to their normal controls: 7 microRNAs were overexpressed in sACC cases and downexpressed in bACC tumors (let-7b, let-7c, miR-17, miR-20a, miR-24, miR-195, miR-768-3) while 9 microRNAs were downexpressed in sACC cases and overexpressed in bACC tissues (let-7e, miR-23b, miR-27b, miR-193b, miR-320a, miR-320c, miR-768-5p, miR-1280 and miR-1826) relative to their controls. We also identified 8 microRNAs which were only expressed in sACCs and one microRNA (miR-1234) which was only absent in sACC cases. By target predictor online databases potential targets of the these microRNAs were detected to identify genes that may play central role in the diverse cinical outcome of bACC and sACC cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nkanza NK (1988) Adenoid cystic carcinoma of the prostate. Cent Afr J Med 34:166–168

    CAS  PubMed  Google Scholar 

  2. Stefani M, Speranza N (1970) A case of cylindroma of the vagina. Riv Anat Patol Oncol 36:77–105

    CAS  PubMed  Google Scholar 

  3. Tchertkoff V, Sedlis A (1962) Cylindroma of the cervix. Am J Obstet Gynecol 84:749–752

    CAS  PubMed  Google Scholar 

  4. Paulino AF, Huvos AG (1999) Epithelial tumors of the lacrimal glands: a clinicopathologic study. Ann Diagn Pathol 3:199–204

    CAS  PubMed  Google Scholar 

  5. Billroth T (1859) Beobachtungen Uber Geschwulste der Speicheldrusen. Arch Path Anat 17:357–375

    Google Scholar 

  6. Mc LP, Tennant R, Sarokhan J (1953) Adenoid cystic carcinoma of the breast; report of a case with unusual features. Surgery 33:905–908

    Google Scholar 

  7. Dent R, Trudeau M, Pritchard KI et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434

    PubMed  Google Scholar 

  8. Ghabach B, Anderson WF, Curtis RE et al (2010) Adenoid cystic carcinoma of the breast in the United States (1977 to 2006): a population-based cohort study. Breast Cancer Res 12:R54

    PubMed Central  PubMed  Google Scholar 

  9. Ciccolallo L, Licitra L, Cantu G et al (2009) Survival from salivary glands adenoid cystic carcinoma in European populations. Oral Oncol 45:669–674

    PubMed  Google Scholar 

  10. Persson M, Andren Y, Mark J et al (2009) Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc Natl Acad Sci U S A 106:18740–18744

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Marchio C, Weigelt B, Reis-Filho JS (2010) Adenoid cystic carcinomas of the breast and salivary glands (or ‘The strange case of Dr Jekyll and Mr Hyde’ of exocrine gland carcinomas). J Clin Pathol 63:220–228

    PubMed  Google Scholar 

  12. Lai EC (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364

    CAS  PubMed  Google Scholar 

  13. Stark A, Brennecke J, Russell RB et al (2003) Identification of Drosophila MicroRNA targets. PLoS Biol 1:E60

    PubMed Central  PubMed  Google Scholar 

  14. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318:1931–1934

    CAS  PubMed  Google Scholar 

  15. Place RF, Li LC, Pookot D et al (2008) MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci U S A 105:1608–1613

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Alves Vidigal J and Ventura A (2012) Embryonic stem cell miRNAs and their roles in development and disease. Semin Cancer Biol 22(5-6):428–36

  17. Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5:351–358

    CAS  PubMed  Google Scholar 

  18. Poy MN, Spranger M, Stoffel M (2007) microRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab 9(Suppl 2):67–73

    CAS  PubMed  Google Scholar 

  19. Schroen B, Heymans S (2012) Small but smart–microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing. Cardiovasc Res 93:605–613

    CAS  PubMed  Google Scholar 

  20. Slaby O, Svoboda M, Michalek J et al (2009) MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer 8:102

    PubMed Central  PubMed  Google Scholar 

  21. Tseng CW, Lin CC, Chen CN et al (2011) Integrative network analysis reveals active microRNAs and their functions in gastric cancer. BMC Syst Biol 5:99

    PubMed Central  PubMed  Google Scholar 

  22. Zhou SL, Wang LD (2010) Circulating microRNAs: novel biomarkers for esophageal cancer. World J Gastroenterol 16:2348–2354

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Paranjape T, Slack FJ, Weidhaas JB (2009) MicroRNAs: tools for cancer diagnostics. Gut 58:1546–1554

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Yeung ML, Jeang KT (2011) MicroRNAs and cancer therapeutics. Pharm Res 28:3043–3049

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Xiao F, Zuo Z, Cai G et al (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Vergoulis T, Vlachos IS, Alexiou P et al (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40:D222–D229

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    CAS  PubMed  Google Scholar 

  28. Friedman RC, Farh KK, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Grimson A, Farh KK, Johnston WK et al (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27:91–105

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Garcia DM, Baek D, Shin C et al (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18:1139–1146

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Wang X (2008) miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 14:1012–1017

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Wang X, El Naqa IM (2008) Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 24:325–332

    PubMed  Google Scholar 

  33. Vranic S, Bilalovic N, Lee LM et al (2007) PIK3CA and PTEN mutations in adenoid cystic carcinoma of the breast metastatic to kidney. Hum Pathol 38:1425–1431

    CAS  PubMed  Google Scholar 

  34. Vranic S, Frkovic-Grazio S, Lamovec J et al (2010) Adenoid cystic carcinomas of the breast have low Topo IIalpha expression but frequently overexpress EGFR protein without EGFR gene amplification. Hum Pathol 41:1617–1623

    CAS  PubMed  Google Scholar 

  35. Sung H, Jeon S, Lee KM et al (2012) Common genetic polymorphisms of microRNA biogenesis pathway genes and breast cancer survival. BMC Cancer 12:195

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Han J, Lee Y, Yeom KH et al (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 18:3016–3027

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Noh H, Hong S, Dong Z et al (2011) Impaired MicroRNA processing facilitates breast cancer cell invasion by upregulating urokinase-type plasminogen activator expression. Genes Cancer 2:140–150

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Zhang X, Cairns M, Rose B et al (2009) Alterations in miRNA processing and expression in pleomorphic adenomas of the salivary gland. Int J Cancer 124:2855–2863

    CAS  PubMed  Google Scholar 

  39. Falbo V, Floridia G, Censi F et al (2011) Three cases of rare salivary gland tumours: a molecular study of TP53, CDKN2A/ARF, RAS, BRAF, PTEN, MAPK2 and EGFR genes. Oncol Rep 26:3–11

    CAS  PubMed  Google Scholar 

  40. Gomes CC, Diniz MG, Orsine LA et al (2012) Assessment of TP53 mutations in benign and malignant salivary gland neoplasms. PLoS One 7:e41261

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Matizonkas-Antonio LF, de Mesquita RA, de Souza SC et al (2005) TP53 mutations in salivary gland neoplasms. Braz Dent J 16:162–166

    PubMed  Google Scholar 

  42. Kazakov DV, Grossmann P, Spagnolo DV et al (2010) Expression of p53 and TP53 mutational analysis in malignant neoplasms arising in preexisting spiradenoma, cylindroma, and spiradenocylindroma, sporadic or associated with Brooke-Spiegler syndrome. Am J Dermatopathol 32:215–221

    PubMed  Google Scholar 

  43. de Lima MD, Marques YM, Alves Sde M Jr et al (2009) MDM2, P53, P21WAF1 and pAKT protein levels in genesis and behaviour of adenoid cystic carcinoma. Cancer Epidemiol 33:142–146

    Google Scholar 

  44. Martin JL, Baxter RC (2007) Expression of insulin-like growth factor binding protein-2 by MCF-7 breast cancer cells is regulated through the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway. Endocrinology 148:2532–2541

    CAS  PubMed  Google Scholar 

  45. Lee AV, Jackson JG, Gooch JL et al (1999) Enhancement of insulin-like growth factor signaling in human breast cancer: estrogen regulation of insulin receptor substrate-1 expression in vitro and in vivo. Mol Endocrinol 13:787–796

    CAS  PubMed  Google Scholar 

  46. Zeng Z, Lin H, Zhao X et al (2012) Overexpression of GOLPH3 promotes proliferation and tumorigenicity in breast cancer via suppression of the FOXO1 transcription factor. Clin Cancer Res 18:4059–4069

    CAS  PubMed  Google Scholar 

  47. Li J, Yang L, Song L et al (2009) Astrocyte elevated gene-1 is a proliferation promoter in breast cancer via suppressing transcriptional factor FOXO1. Oncogene 28:3188–3196

    CAS  PubMed  Google Scholar 

  48. Dote H, Toyooka S, Tsukuda K et al (2004) Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in breast cancer. Clin Cancer Res 10:2082–2089

    CAS  PubMed  Google Scholar 

  49. Chen H, Toyooka S, Gazdar AF et al (2003) Epigenetic regulation of a novel tumor suppressor gene (hDAB2IP) in prostate cancer cell lines. J Biol Chem 278:3121–3130

    CAS  PubMed  Google Scholar 

  50. Dote H, Toyooka S, Tsukuda K et al (2005) Aberrant promoter methylation in human DAB2 interactive protein (hDAB2IP) gene in gastrointestinal tumour. Br J Cancer 92:1117–1125

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Duan YF, Li DF, Liu YH et al (2013) Decreased expression of DAB2IP in pancreatic cancer with wild-type KRAS. Hepatobiliary Pancreat Dis Int 12:204–209

    CAS  PubMed  Google Scholar 

  52. Liu T, Li Y, Gu H et al (2013) p21-Activated kinase 6 (PAK6) inhibits prostate cancer growth via phosphorylation of androgen receptor and tumorigenic E3 ligase murine double minute-2 (Mdm2). J Biol Chem 288:3359–3369

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Minden A (2012) PAK4-6 in cancer and neuronal development. Cell Logist 2:95–104

    PubMed Central  PubMed  Google Scholar 

  54. Lee SR, Ramos SM, Ko A et al (2002) AR and ER interaction with a p21-activated kinase (PAK6). Mol Endocrinol 16:85–99

    CAS  PubMed  Google Scholar 

  55. Voz ML, Astrom AK, Kas K et al (1998) The recurrent translocation t(5;8)(p13;q12) in pleomorphic adenomas results in upregulation of PLAG1 gene expression under control of the LIFR promoter. Oncogene 16:1409–1416

    CAS  PubMed  Google Scholar 

  56. Hibbard MK, Kozakewich HP, Dal Cin P et al (2000) PLAG1 fusion oncogenes in lipoblastoma. Cancer Res 60:4869–4872

    CAS  PubMed  Google Scholar 

  57. Debiec-Rychter M, Van Valckenborgh I, Van den Broeck C et al (2001) Histologic localization of PLAG1 (pleomorphic adenoma gene 1) in pleomorphic adenoma of the salivary gland: cytogenetic evidence of common origin of phenotypically diverse cells. Lab Invest 81:1289–1297

    CAS  PubMed  Google Scholar 

  58. Daa T, Nakamura I, Yada N et al (2013) PLAG1 and CYLD do not play a role in the tumorigenesis of adenoid cystic carcinoma. Mol Med Rep 7:1086–1090

    CAS  PubMed  Google Scholar 

  59. Gross S, Krause Y, Wuelling M et al (2012) Hoxa11 and Hoxd11 regulate chondrocyte differentiation upstream of Runx2 and Shox2 in mice. PLoS One 7:e43553

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Bouba I, Siomou E, Stefanidis CJ et al (2009) Absence of mutations in the HOXA11 and HOXD11 genes in children with congenital renal malformations. Pediatr Nephrol 24:1569–1572

    PubMed  Google Scholar 

  61. Schwab K, Hartman HA, Liang HC et al (2006) Comprehensive microarray analysis of Hoxa11/Hoxd11 mutant kidney development. Dev Biol 293:540–554

    CAS  PubMed  Google Scholar 

  62. Turbendian HK, Gordillo M, Tsai SY et al (2013) GATA factors efficiently direct cardiac fate from embryonic stem cells. Development 140:1639–1644

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Terada T (2012) Pigmented adenoid cystic carcinoma of the ear skin arising from the epidermis: a case report with immunohistochemical studies. Int J Clin Exp Pathol 5:254–259

    PubMed Central  PubMed  Google Scholar 

  64. El Ayoubi A, Poizat F, Garrel R et al (2009) Sinonasal adenocarcinomas reviewed. Prognostic value of WHO 2005 histological classification. Ann Otolaryngol Chir Cervicofac 126:175–181

    PubMed  Google Scholar 

  65. Takata T, Kudo Y, Zhao M et al (1999) Reduced expression of p27(Kip1) protein in relation to salivary adenoid cystic carcinoma metastasis. Cancer 86:928–935

    CAS  PubMed  Google Scholar 

  66. Shahsavari F, Eslami M, Baghaie F et al (2005) Immunohistochemical evaluation of p27 (kip1) in pleomorphic adenomas and adenoid cystic carcinomas of the minor salivary glands. Asian Pac J Cancer Prev 6:527–530

    PubMed  Google Scholar 

  67. Daa T, Kashima K, Kondo Y et al (2008) Aberrant methylation in promoter regions of cyclin-dependent kinase inhibitor genes in adenoid cystic carcinoma of the salivary gland. APMIS 116:21–26

    CAS  PubMed  Google Scholar 

  68. Ivanov SV, Panaccione A, Brown B et al (2012) TrkC signaling is activated in adenoid cystic carcinoma and requires NT-3 to stimulate invasive behavior. Oncogene 32(32):3698–710

  69. Katsushima K, Shinjo K, Natsume A et al (2012) Contribution of microRNA-1275 to Claudin11 suppression via a polycomb-mediated silencing mechanism in human glioma stem-like cells. J Biol Chem 287(33):27396–406

  70. Hashiguchi Y, Nishida N, Mimori K et al (2012) Down-regulation of miR-125a-3p in human gastric cancer and its clinicopathological significance. Int J Oncol 40:1477–1482

    CAS  PubMed  Google Scholar 

  71. Jiang L, Huang Q, Zhang S et al (2010) Hsa-miR-125a-3p and hsa-miR-125a-5p are downregulated in non-small cell lung cancer and have inverse effects on invasion and migration of lung cancer cells. BMC Cancer 10:318

    PubMed Central  PubMed  Google Scholar 

  72. Zhang X, Ladd A, Dragoescu E et al (2009) MicroRNA-17-3p is a prostate tumor suppressor in vitro and in vivo, and is decreased in high grade prostate tumors analyzed by laser capture microdissection. Clin Exp Metastasis 26:965–979

    CAS  PubMed  Google Scholar 

  73. Nohata N, Hanazawa T, Enokida H et al (2012) microRNA-1/133a and microRNA-206/133b clusters: dysregulation and functional roles in human cancers. Oncotarget 3:9–21

    PubMed Central  PubMed  Google Scholar 

  74. Suzuki K, Cheng J, Watanabe Y (2003) Hepatocyte growth factor and c-Met (HGF/c-Met) in adenoid cystic carcinoma of the human salivary gland. J Oral Pathol Med 32:84–89

    CAS  PubMed  Google Scholar 

  75. Chen J, Shi Y, Li Z et al (2011) A functional variant of IC53 correlates with the late onset of colorectal cancer. Mol Med 17:607–618

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Wetterskog D, Lopez-Garcia MA, Lambros MB et al (2012) Adenoid cystic carcinomas constitute a genomically distinct subgroup of triple-negative and basal-like breast cancers. J Pathol 226:84–96

    CAS  PubMed  Google Scholar 

  77. Vincent-Salomon A, Macgrogan G, Charaffe-Jauffret E et al (2010) Identification of basal-like carcinomas in clinical practice: “triple zero/BRCA1-like” carcinomas. Bull Cancer 97:357–363

    CAS  PubMed  Google Scholar 

  78. Ding L, Zhu S, Xie S et al (2008) Effect of exogenous bFGF on the proliferation of human adenoid cystic carcinoma ACC-2 cells. J Huazhong Univ Sci Technol Med Sci 28:227–229

    CAS  PubMed  Google Scholar 

  79. Hu K, Gan YH, Li SL et al (2009) Relationship of activated extracellular signal-regulated kinase 1/2 with lung metastasis in salivary adenoid cystic carcinoma. Oncol Rep 21:137–143

    CAS  PubMed  Google Scholar 

  80. Bell A, Bell D, Weber RS et al (2011) CpG island methylation profiling in human salivary gland adenoid cystic carcinoma. Cancer 117:2898–2909

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Tanzer A, Stadler PF (2004) Molecular evolution of a microRNA cluster. J Mol Biol 339:327–335

    CAS  PubMed  Google Scholar 

  82. Dews M, Homayouni A, Yu D et al (2006) Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet 38:1060–1065

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Sareeboot T, Punyarit P, Petmitr S (2011) DNA amplification on chromosome 13q31.1 correlated with poor prognosis in colorectal cancer. Clin Exp Med 11:97–103

    PubMed  Google Scholar 

  84. Reichek JL, Duan F, Smith LM et al (2011) Genomic and clinical analysis of amplification of the 13q31 chromosomal region in alveolar rhabdomyosarcoma: a report from the Children’s Oncology Group. Clin Cancer Res 17:1463–1473

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Eiriksdottir G, Johannesdottir G, Ingvarsson S et al (1998) Mapping loss of heterozygosity at chromosome 13q: loss at 13q12-q13 is associated with breast tumour progression and poor prognosis. Eur J Cancer 34:2076–2081

    CAS  PubMed  Google Scholar 

  86. Lin YW, Sheu JC, Liu LY et al (1999) Loss of heterozygosity at chromosome 13q in hepatocellular carcinoma: identification of three independent regions. Eur J Cancer 35:1730–1734

    CAS  PubMed  Google Scholar 

  87. He L, Thomson JM, Hemann MT et al (2005) A microRNA polycistron as a potential human oncogene. Nature 435:828–833

    CAS  PubMed  Google Scholar 

  88. Tsuchida A, Ohno S, Wu W et al (2011) miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci 102:2264–2271

    CAS  PubMed  Google Scholar 

  89. Hayashita Y, Osada H, Tatematsu Y et al (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65:9628–9632

    CAS  PubMed  Google Scholar 

  90. Huang G, Nishimoto K, Zhou Z et al (2012) miR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating Fas expression. Cancer Res 72:908–916

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Italiano A, Thomas R, Breen M et al (2012) The miR-17-92 cluster and its target THBS1 are differentially expressed in angiosarcomas dependent on MYC amplification. Genes Chromosomes Cancer 51:569–578

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Ota A, Tagawa H, Karnan S et al (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 64:3087–3095

    CAS  PubMed  Google Scholar 

  93. Tagawa H, Seto M (2005) A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 19:2013–2016

    CAS  PubMed  Google Scholar 

  94. Gordon AT, Brinkschmidt C, Anderson J et al (2000) A novel and consistent amplicon at 13q31 associated with alveolar rhabdomyosarcoma. Genes Chromosomes Cancer 28:220–226

    CAS  PubMed  Google Scholar 

  95. Li H, Bian C, Liao L et al (2011) miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1. Breast Cancer Res Treat 126:565–575

    CAS  PubMed  Google Scholar 

  96. Kang HW, Wang F, Wei Q et al (2012) miR-20a promotes migration and invasion by regulating TNKS2 in human cervical cancer cells. FEBS Lett 586:897–904

    CAS  PubMed  Google Scholar 

  97. Doebele C, Bonauer A, Fischer A et al (2010) Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood 115:4944–4950

    CAS  PubMed  Google Scholar 

  98. Gottardo F, Liu CG, Ferracin M et al (2007) Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25:387–392

    CAS  PubMed  Google Scholar 

  99. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    CAS  PubMed Central  PubMed  Google Scholar 

  100. O’Donnell KA, Wentzel EA, Zeller KI et al (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843

    PubMed  Google Scholar 

  101. Vekony H, Raaphorst FM, Otte AP et al (2008) High expression of Polycomb group protein EZH2 predicts poor survival in salivary gland adenoid cystic carcinoma. J Clin Pathol 61:744–749

    CAS  PubMed  Google Scholar 

  102. Shirasaki T, Maruya S, Mizukami H et al (2008) Effects of small interfering RNA targeting thymidylate synthase on survival of ACC3 cells from salivary adenoid cystic carcinoma. BMC Cancer 8:348

    PubMed Central  PubMed  Google Scholar 

  103. Sequeiros-Santiago G, Garcia-Carracedo D, Fresno MF et al (2009) Oncogene amplification pattern in adenoid cystic carcinoma of the salivary glands. Oncol Rep 21:1215–1222

    CAS  PubMed  Google Scholar 

  104. Hoffmann TK, Sonkoly E, Homey B et al (2007) Aberrant cytokine expression in serum of patients with adenoid cystic carcinoma and squamous cell carcinoma of the head and neck. Head Neck 29:472–478

    PubMed  Google Scholar 

  105. Zhao X, Chao YL, Wan QB et al (2011) Flavokawain B induces apoptosis of human oral adenoid cystic cancer ACC-2 cells via up-regulation of Bim and down-regulation of Bcl-2 expression. Can J Physiol Pharmacol 89(12):875–83

  106. Hao L, Xiao-lin N, Qi C et al (2010) Nerve growth factor and vascular endothelial growth factor: retrospective analysis of 63 patients with salivary adenoid cystic carcinoma. Int J Oral Sci 2:35–44

    PubMed  Google Scholar 

  107. Zhang J, Peng B (2007) In vitro angiogenesis and expression of nuclear factor kappaB and VEGF in high and low metastasis cell lines of salivary gland Adenoid Cystic Carcinoma. BMC Cancer 7:95

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Bernheim A, Toujani S, Saulnier P et al (2008) High-resolution array comparative genomic hybridization analysis of human bronchial and salivary adenoid cystic carcinoma. Lab Invest 88:464–473

    CAS  PubMed  Google Scholar 

  109. Porkka KP, Pfeiffer MJ, Waltering KK et al (2007) MicroRNA expression profiling in prostate cancer. Cancer Res 67:6130–6135

    CAS  PubMed  Google Scholar 

  110. Fuse M, Kojima S, Enokida H et al (2012) Tumor suppressive microRNAs (miR-222 and miR-31) regulate molecular pathways based on microRNA expression signature in prostate cancer. J Hum Genet 57:691–699

    CAS  PubMed  Google Scholar 

  111. Ishteiwy RA, Ward TM, Dykxhoorn DM et al (2012) The microRNA -23b/-27b cluster suppresses the metastatic phenotype of castration-resistant prostate cancer cells. PLoS One 7:e52106

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Hu H, Li S, Liu J et al (2012) MicroRNA-193b modulates proliferation, migration, and invasion of non-small cell lung cancer cells. Acta Biochim Biophys Sin (Shanghai) 44:424–430

    CAS  Google Scholar 

  113. Chen J, Abi-Daoud M, Wang A et al (2012) Stathmin 1 is a potential novel oncogene in melanoma. Oncogene 32(10):1330–7

  114. Rauhala HE, Jalava SE, Isotalo J et al (2010) miR-193b is an epigenetically regulated putative tumor suppressor in prostate cancer. Int J Cancer 127:1363–1372

    CAS  PubMed  Google Scholar 

  115. Desmet CJ, Gallenne T, Prieur A et al (2013) Identification of a pharmacologically tractable Fra-1/ADORA2B axis promoting breast cancer metastasis. Proc Natl Acad Sci U S A 110:5139–5144

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the kind help of Erzsebet Azumah in the immunohistochemistry, Erzsébet Rásó in the IPA® analysis and Krisztina Schlachter in the Adobe Photoshop management.

Support: TÁMOP-4.2.2/B-10/1-2010-0013; TÁMOP-4.2.1/B-09/1/KMR-2010-0001

Ethical approval: TUKEB 101/2012

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janina Kulka.

Appendixes

Appendixes

App. 1 Ingenuity Pathway Analysis (IPA®): intracellular pathways and their connections to miRNAs of our system; network in bACCs.

figure a

App. 2 Ingenuity Pathway Analysis (IPA®): intracellular pathways and their connections to miRNAs of our system; network in sACCs

figure b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiss, O., Tőkés, AM., Spisák, S. et al. Breast- and Salivary Gland-Derived Adenoid Cystic Carcinomas: Potential Post-Transcriptional Divergencies. A Pilot Study Based on miRNA Expression Profiling of Four Cases and Review of the Potential Relevance of the Findings. Pathol. Oncol. Res. 21, 29–44 (2015). https://doi.org/10.1007/s12253-014-9770-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-014-9770-1

Keywords

Navigation