Skip to main content

Advertisement

Log in

Multipotent mesenchymal stromal cells are fully permissive for human cytomegalovirus infection

  • Research Article
  • Published:
Virologica Sinica

Abstract

Congenital human cytomegalovirus (HCMV) infection is a leading infectious cause of birth defects. Previous studies have reported birth defects with multiple organ maldevelopment in congenital HCMV-infected neonates. Multipotent mesenchymal stromal cells (MSCs) are a group of stem/progenitor cells that are multi-potent and can self-renew, and they play a vital role in multi-organ formation. Whether MSCs are susceptible to HCMV infection is unclear. In this study, MSCs were isolated from Wharton’s jelly of the human umbilical cord and identified by their plastic adherence, surface marker pattern, and differentiation capacity. Then, the MSCs were infected with the HCMV Towne strain, and infection status was assessed via determination of viral entry, replication initiation, viral protein expression, and infectious virion release using western blotting, immunofluorescence assays, and plaque forming assays. The results indicate that the isolated MSCs were fully permissive for HCMV infection and provide a preliminary basis for understanding the pathogenesis of HCMV infection in non-nervous system diseases, including multi-organ malformation during fetal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal S, Pittenger MF. 2005. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105: 1815–1822.

    Article  CAS  PubMed  Google Scholar 

  • Angelova M, Zwezdaryk K, Ferris M, Shan B, Morris CA, Sullivan DE. 2012. Human cytomegalovirus infection dysregulates the canonical Wnt/beta-catenin signaling pathway. PLoS Pathog, 8: e1002959.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bale JF, 1984. Human cytomegalovirus infection and disorders of the nervous system. Arch Neurol, 41: 310–320.

    Article  PubMed  Google Scholar 

  • Bentz GL, Yurochko AD. 2008. Human CMV infection of endothelial cells induces an angiogenic response through viral binding to EGF receptor and beta(1) and beta(3) integrins. Proceedings of the National Academy of Sciences of the United States of America, 105: 5531–5536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beutler T, Hoflich C, Stevens PA, Kruger DH, Prosch S. 2003. Downregulation of the epidermal growth factor receptor by human cytomegalovirus infection in human fetal lung fibroblasts. Am J Respir Cell Mol Biol, 28: 86–94.

    Article  CAS  PubMed  Google Scholar 

  • Bhumbra NA, Lewandowski P, Lau P, Sererat M, Satish M, Nankervis GA. 1988. Evaluation of a prescreening blood donor program for prevention of perinatal transfusion-acquired cytomegalovirus (CMV) infection. J Perinat Med, 16: 127–131.

    Article  CAS  PubMed  Google Scholar 

  • Bruder SP, Fink DJ, Caplan AI. 1994. Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem, 56: 283–294.

    Article  CAS  PubMed  Google Scholar 

  • Cinatl J, Margraf S, Vogel JU, Scholz M, Cinatl J, Doerr HW. 2001. Human cytomegalovirus circumvents NF-kappa B dependence in retinal pigment epithelial cells. J Immunol, 167: 4771–4771.

    Article  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8: 315–317.

    CAS  PubMed  Google Scholar 

  • Duan YL, Ye HQ, Zavala AG, Yang CQ, Miao LF, Fu BS, Seo KS, Davrinche C, Luo MH, Fortunato EA. 2014. Maintenance of large numbers of virus genomes in human cytomegalovirusinfected T98G glioblastoma cells. J Virol, 88: 3861–3873.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudakovic A, Camilleri ET, Lewallen EA, McGee-Lawrence ME, Riester SM, Kakar S, Montecino M, Stein GS, Ryoo HM, Dietz AB, Westendorf JJ, van Wijnen AJ. 2015. Histone deacetylase inhibition destabilizes the multi-potent state of uncommitted adipose-derived mesenchymal stromal cells. J Cell Physiol, 230: 52–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Shinawi M, Mohamed HT, El-Ghonaimy EA, Tantawy M, Younis A, Schneider RJ, Mohamed MM. 2013. Human cytomegalovirus infection enhances NF-kappaB/p65 signaling in inflammatory breast cancer patients. PLoS One, 8: e55755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fairley JA, Baillie J, Bain M, Sinclair JH. 2002. Human cytomegalovirus infection inhibits epidermal growth factor (EGF) signalling by targeting EGF receptors. J Gen Virol, 83: 2803–2810.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert GL, Hayes K, Hudson IL, James J. 1989. Prevention of transfusion-acquired cytomegalovirus infection in infants by blood filtration to remove leucocytes. Neonatal Cytomegalovirus Infection Study Group. Lancet, 1: 1228–1231.

    CAS  Google Scholar 

  • Goodrum FD, Jordan CT, High K, Shenk T. 2002. Human cytomegalovirus gene expression during infection of primary hematopoietic progenitor cells: a model for latency. Proc Natl Acad Sci U S A, 99: 16255–16260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han YF, Tao R, Sun TJ, Chai JK, Xu G, Liu J. 2013. Optimization of human umbilical cord mesenchymal stem cell isolation and culture methods. Cytotechnology, 65: 819–827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isern E, Gustems M, Messerle M, Borst E, Ghazal P, Angulo A. 2011. The Activator Protein 1 Binding Motifs within the Human Cytomegalovirus Major Immediate-Early Enhancer Are Functionally Redundant and Act in a Cooperative Manner with the NF-kappa B Sites during Acute Infection. J Virol, 85: 1732–1746.

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. 1997. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem, 64: 295–312.

    Article  CAS  PubMed  Google Scholar 

  • Kapoor A, He R, Venkatadri R, Forman M, Arav-Boger R. 2013. Wnt modulating agents inhibit human cytomegalovirus replication. Antimicrob Agents Ch, 57: 2761–2767.

    Article  CAS  Google Scholar 

  • Kwon YJ, Kim DJ, Kim JH, Park CG, Cha CY, Hwang ES. 2004. Human cytomegalovirus (HCMV) infection in osteosarcoma cell line suppresses GM-CSF production by induction of TGFbeta. Microbiol Immunol, 48: 195–199.

    Article  CAS  PubMed  Google Scholar 

  • Landolfo S, Gariglio M, Gribaudo G, Lembo D. 2003. The human cytomegalovirus. Pharmacol Ther, 98: 269–297.

    Article  CAS  PubMed  Google Scholar 

  • Laranjeira P, Pedrosa M, Pedreiro S, Gomes J, Martinho A, Antunes B, Ribeiro T, Santos F, Trindade H, Paiva A. 2015. Effect of human bone marrow mesenchymal stromal cells on cytokine production by peripheral blood naive, memory, and effector T cells. Stem Cell Res Ther, 6: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Blanc K, Mougiakakos D. 2012. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol, 12: 383–396.

    Article  PubMed  Google Scholar 

  • Lecointe D, Hery C, Janabi N, Dussaix E, Tardieu M. 1999. Differences in kinetics of human cytomegalovirus cell-free viral release after in vitro infection of human microglial cells, astrocytes and monocyte-derived macrophages. J Neurovirol, 5: 308–313.

    Article  CAS  PubMed  Google Scholar 

  • Li XJ, Liu XJ, Yang B, Fu YR, Zhao F, Shen ZZ, Miao LF, Rayner S, Chavanas S, Zhu H, Britt WJ, Tang Q, Mc Voy MA, Luo MH. 2015. Human Cytomegalovirus Infection Dysregulates the Localization and Stability of NICD1 and Jag1 in Neural Progenitor Cells. J Virol, 89: 6792–6804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu LL, Liu YJ, Yang SG, Zhao QJ, Wang X, Gong W, Han ZB, Xu ZS, Lu YX, Liu D, Chen ZZ, Han ZC. 2006. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesis-supportive function and other potentials. Haematologica, 91: 1017–1026.

    CAS  PubMed  Google Scholar 

  • Luo MH, Fortunato EA. 2007. Long-term infection and shedding of human cytomegalovirus in T98G glioblastoma cells. J Virol, 81: 10424–10436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo MH, Hannemann H, Kulkarni AS, Schwartz PH, O’Dowd JM, Fortunato EA. 2010. Human cytomegalovirus infection causes premature and abnormal differentiation of human neural progenitor cells. J Virol, 84: 3528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo MH, Rosenke K, Czornak K, Fortunato EA. 2007. Human cytomegalovirus disrupts both ataxia telangiectasia mutated protein (ATM)-and ATM-Rad3-related kinase-mediated DNA damage responses during lytic infection. J virol, 81: 1934.

    Article  CAS  PubMed  Google Scholar 

  • Luo MH, Schwartz PH, Fortunato EA. 2008. Neonatal neural progenitor cells and their neuronal and glial cell derivatives are fully permissive for human cytomegalovirus infection. J Virol, 82: 9994–10007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathers C, Schafer X, Martinez-Sobrido L, Munger J. 2014. The human cytomegalovirus UL26 protein antagonizes NF-kappaB activation. J Virol, 88: 14289–14300.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mrugala D, Dossat N, Ringe J, Delorme B, Coffy A, Bony C, Charbord P, Haupl T, Daures JP, Noel D, Jorgensen C. 2009. Gene Expression Profile of Multipotent Mesenchymal Stromal Cells: Identification of Pathways Common to TGF beta 3/BMP2-Induced Chondrogenesis. Cloning and Stem Cells, 11: 61–75.

    Article  CAS  PubMed  Google Scholar 

  • Musiani M, Zerbini M, Carpi C, Plazzi M, Sermasi G, Belletti D, Sacchi R. 1984. Serological screening for the prevention of transfusion-acquired cytomegalovirus infection. J Infect, 9: 148–152.

    Article  CAS  PubMed  Google Scholar 

  • Noyola DE, Jimenez-Capdeville ME, Demmler-Harrison GJ. 2010. Central nervous system disorders in infants with congenital cytomegalovirus infection. Neurol Res, 32: 278–284.

    Article  PubMed  Google Scholar 

  • Pan X, Li XJ, Liu XJ, Yuan H, Li JF, Duan YL, Ye HQ, Fu YR, Qiao GH, Wu CC, Yang B, Tian XH, Hu KH, Miao LF, Chen XL, Zheng J, Rayner S, Schwartz PH, Britt WJ, Xu J, Luo MH. 2013a. Later Passage Neural Progenitor Cells from Neonatal Brain Are More Permissive for Human Cytomegalovirus Infection. J Virol. 87: 10968–10979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan X, Li XJ, Liu XJ, Yuan H, Li JF, Duan YL, Ye HQ, Fu YR, Qiao GH, Wu CC, Yang B, Tian XH, Hu KH, Miao LF, Chen XL, Zheng J, Rayner S, Schwartz PH, Britt WJ, Xu J, Luo MH. 2013b. Later passages of neural progenitor cells from neonatal brain are more permissive for human cytomegalovirus infection. J Virol, 87: 10968–10979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penfold ME, Mocarski ES. 1997. Formation of cytomegalovirus DNA replication compartments defined by localization of viral proteins and DNA synthesis. Virology, 239: 46–61.

    Article  CAS  PubMed  Google Scholar 

  • Phinney DG, Prockop DJ. 2007. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells, 25: 2896–2902.

    Article  PubMed  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  • Pittenger MF, Martin BJ. 2004. Mesenchymal stem cells and their potential as cardiac therapeutics. Circulation Research, 95: 9–20.

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt B, Mertens T, Mayr-Beyrle U, Frank H, Lüske A, Schierling K, Waltenberger J. 2005a. HCMV infection of human vascular smooth muscle cells leads to enhanced expreßsion of functionally intact PDGF receptor. Cardiovascular Research, 67: 151–160.

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt B, Mertens T, Mayr-Beyrle U, Frank H, Luske A, Schierling K, Waltenberger J. 2005b. HCMV infection of human vascular smooth muscle cells leads to enhanced expression of functionally intact PDGF beta-receptor. Cardiovasc Res, 67: 151–160.

    Article  CAS  PubMed  Google Scholar 

  • Rylova YV, Milovanova NV, Gordeeva MN, Savilova AM. 2015. Characteristics of Multipotent Mesenchymal Stromal Cells from Human Terminal Placenta. Bull Exp Biol Med, 159: 253–257.

    Article  CAS  PubMed  Google Scholar 

  • Sela M, Tirza G, Ravid O, Volovitz I, Solodeev I, Friedman O, Zipori D, Gur E, Krelin Y, Shani N. 2015. NOX1-induced accumulation of reactive oxygen species in abdominal fat-derived mesenchymal stromal cells impinges on long-term proliferation. Cell Death Dis, 6: e1728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimamura M, Murphy-Ullrich JE, Britt WJ. 2010. Human cytomegalovirus induces TGF-beta1 activation in renal tubular epithelial cells after epithelial-to-mesenchymal transition. PLoS Pathog, 6: e1001170.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sibov TT, Severino P, Marti LC, Pavon LF, Oliveira DM, Tobo PR, Campos AH, Paes AT, Amaro E, L FG, Moreira-Filho CA. 2012. Mesenchymal stem cells from umbilical cord blood: parameters for isolation, characterization and adipogenic differentiation. Cytotechnology, 64: 511–521.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinzger C, Jahn G. 1996. Human cytomegalovirus cell tropism and pathogenesis. Intervirology, 39: 302–319.

    CAS  PubMed  Google Scholar 

  • Tan SL, Ahmad TS, Ng WM, Azlina AA, Azhar MM, Selvaratnam L, Kamarul T. 2015. Identification of Pathways Mediating Growth Differentiation Factor5-Induced Tenogenic Differentiation in Human Bone Marrow Stromal Cells. PLoS One, 10: e0140869.

    Article  PubMed  PubMed Central  Google Scholar 

  • Watson N, Divers R, Kedar R, Mehindru A, Borlongan MC, Borlongan CV. 2015. Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy, 17: 18–24.

    Article  PubMed  Google Scholar 

  • Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF. 2013. Mesenchymal stem cells: a new trend for cell therapy. Acta Pharmacol Sin, 34: 747–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young HE, Mancini ML, Wright RP, Smith JC, Black AC, Reagan CR, Lucas PA. 1995. Mesenchymal Stem-Cells Reside within the Connective Tissues of Many Organs. Developmental Dynamics, 202: 137–144.

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. 2001. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 7: 211–228.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuang Cheng or Min-Hua Luo.

Additional information

ORCID: 0000-0001-9255-0453

ORCID: 0000-0001-9352-0643

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, GH., Zhao, F., Cheng, S. et al. Multipotent mesenchymal stromal cells are fully permissive for human cytomegalovirus infection. Virol. Sin. 31, 219–228 (2016). https://doi.org/10.1007/s12250-016-3754-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-016-3754-0

Keywords

Navigation