Skip to main content
Log in

Positive selection analysis of VP1 Genes of worldwide human enterovirus 71 viruses

  • Published:
Virologica Sinica

Abstract

Human enterovirus 71 viruses have been long circulating throughout the world. In this study, we performed a positive selection analysis of the VP1 genes of capsid proteins from Enterovirus 71 viruses. Our results showed that although most sites were under negative or neutral evolution, four positions of the VP1 genes were under positive selection pressure. This might account for the spread and frequent outbreaks of the viruses and the enhanced neurovirulence. In particular, position 98 might be involved in neutralizing antibodies, modulating the virus-receptor interaction and enhancing the virulence of the viruses. Moreover, both positions 145 and 241 might correlate to determine the receptor specificity. However, these positions did not display much difference in amino acid polymorphism. In addition, no position in the VP1 genes of viruses isolated from China was under positive selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown B A, Pallansch M A. 1995. Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus. Virus Res, 39(2–3): 195–205.

    Article  PubMed  CAS  Google Scholar 

  2. Brown B A, Steven Oberste M, Alexander J P, et al. 1999. Molecular Epidemiology and Evolution of Enterovirus 71 Strains Isolated from 1970 to 1998. J Virol, 73(12): 9969–9975.

    PubMed  CAS  Google Scholar 

  3. Bush R M, Fitch W M, Bender C A, et al. 1999. Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol, 16: 1457–1465.

    PubMed  CAS  Google Scholar 

  4. Campitelli L, Ciccozzi M, Salemi M, et al. 2006. H5N1 influenza virus evolution: a comparison of different epidemics in birds and humans (1997-2004). J Gen Virol, 87: 955–960.

    Article  PubMed  CAS  Google Scholar 

  5. Cardosa M J, Krishnan S, Tio P H, et al. 1999. Isolation of subgenus B adenovirus during a fatal outbreak of enterovirus 71-associated hand, foot and mouth disease in Sibu, Sarawak. Lancet, 354: 987–991.

    Article  PubMed  CAS  Google Scholar 

  6. Cardosa M J, Perera D, Brown B A, et al. 2003. Molecular epidemiology of human enterovirus 71 strains and recent outbreaks in the Asia-Pacific region: comparative analysis of the VP1 and VP4 genes. Emerg Infect Dis, 9(4): 461–468.

    PubMed  Google Scholar 

  7. Chan L G, Parashar U D, Lye M S, et al. 2000. Deaths of children duringan outbreak of hand, foot and mouth disease in Sarawak, Malaysia: clinical and pathological characteristics of the disease. Clin Infect Dis, 31: 678–683.

    Article  PubMed  CAS  Google Scholar 

  8. Chan Y F, AbuBaker S. 2004. Recombinant human enterovirus 71 in hand, foot and mouth disease patients. Emerg Infect Dis, 10(8): 1468–1470.

    PubMed  Google Scholar 

  9. Dong X N, Ying J, Chen Y H. 2007. Molecular epidemiology and evolution of worldwide enterovirus 71 strains isolated from 1970 to 2004. Chin Sci Bull, 52(11):1484–1490

    Article  CAS  Google Scholar 

  10. Fitch W M, Leiter J M E, Li X, et al. 1991. Positive Darwinian evolution in human influenza A viruses. Proc Natl Acad Sci USA, 88: 4270–4274.

    Article  PubMed  CAS  Google Scholar 

  11. Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol, 52: 696–704.

    Article  PubMed  Google Scholar 

  12. http://news.sina.com.cn/z/ahbyetgrbd/index.shtml

  13. Ina Y, Gojobori T. 1994. Statistical analysis of nucleotide sequences of the hemagglutinin gene of human influenza A viruses. Proc Natl Acad Sci USA, 91: 8388–8392.

    Article  PubMed  CAS  Google Scholar 

  14. Kim S, Smith T J, Chapman M S, et al. 1989. Crystal structure of human rhinovirus serotype 1A (HRV1A). J Mol Biol, 210: 91–111.

    Article  PubMed  CAS  Google Scholar 

  15. Kosakovsky Pond S L, Frost S D W, Muse S V. 2005. HyPhy: hypothesis testing using phylogenies. Bioinformatics, 21: 676–679.

    Article  Google Scholar 

  16. Lambert C, Leonard N, De Bolle X, et al. 2002. ESyPred3D: Prediction of proteins 3D structures. Bioinformatics, 18: 1250–1256.

    Article  PubMed  CAS  Google Scholar 

  17. Li L, He Y, Yang H, et al. 2005. Genetic characteristics of human enterovirus 71 and coxsackievirus A16 circulating from 1999 to 2004 in Shenzhen, People’s Republic of China. J Clin Microbiol, 43(8): 3835–3839.

    Article  PubMed  CAS  Google Scholar 

  18. Mateu M G. 1995. Antibody recognition of picornaviruses and escape from neutralization: a structural view. Virus Res, 38: 1–24.

    Article  PubMed  CAS  Google Scholar 

  19. McMinn P, Lindsay K, Perera D, et al. 2001. Phylogenetic analysis of enterovirus 71 strains isolated during linked epidemics in Malaysia, Singapore, and Western Australia. J Virol, 75(16): 7732–7738.

    Article  PubMed  CAS  Google Scholar 

  20. Minor P D. 1990. Antigenic structure of picornaviruses. Curr Top Microbiol Immunol, 161: 121–154.

    PubMed  CAS  Google Scholar 

  21. Oberste M S, Maher K, Kilpatrick D R, et al. 1999. Molecular Evolution of the Human Enteroviruses: Correlation of Serotype with VP1 Sequence and Application to Picornavirus Classification. J Virol, 73: 1941–1948.

    PubMed  CAS  Google Scholar 

  22. Olson N H, Kolatkar P R, Oliveira M A, et al. 1993. Structure of a human rhinovirus complexed with its receptor molecule. Proc Natl Acad Sci USA, 90: 507–511.

    Article  PubMed  CAS  Google Scholar 

  23. Rossman M G, Arnold A, Erickson J W, et al. 1985. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature, 317: 145–153.

    Article  Google Scholar 

  24. Schmidt N J, Lennette E H, Ho H H. 1974. An apparently new enterovirus isolated from patients with disease of the central nervous system. J Infect Dis, 129:304–309.

    PubMed  CAS  Google Scholar 

  25. Shimizu H, Utama A, Onnimala N, et al. 2004. Molecular epidemiology of enterovirus 71 infection in the Western Pacific Region. Pediatr Int, 46(2): 231–235.

    Article  PubMed  Google Scholar 

  26. Reimann B Y, Zell R, Kandolf R. 1991. Mapping of a neutralizing antigenic site of Coxsackievirus B4 by construction of an antigen chimera. J Virol, 65(7): 3475–3480

    PubMed  CAS  Google Scholar 

  27. Yoke-Fun C, AbuBakar S. 2006. Phylogenetic evidence for inter-typic recombination in the emergence of human enterovirus 71 subgenotypes. BMC Microbiol, 6: 74.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-feng Shi or Chao-dong Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Wf., Zhang, Z., Dun, As. et al. Positive selection analysis of VP1 Genes of worldwide human enterovirus 71 viruses. Virol. Sin. 24, 59–64 (2009). https://doi.org/10.1007/s12250-009-2976-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-009-2976-9

Key words

CLC number

Navigation