Skip to main content
Log in

A Simple Approach to Preparation of Surfactant Nano-Micelles Loaded Drugs

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

The ability to formulate optimum drug-loaded carriers is a challenge that impedes virtuous drug delivery and stability. Nano micelles (NMs) are highly prospective carriers due to their minute dimensions and exceptional biocompatibility. This study investigated a more efficient and straightforward fabrication method for surfactant nano micelles than the conventional solvent vaporization process. The objective was to develop and validate the Direct Method, an expedited approach for producing surfactant NMs. Tween 20, was employed to simulate the solubility of various drugs in Surfactant, including azithromycin monohydrate, fusidic acid, and metronidazole. Four distinct concentrations of the medication were employed. The polydispersity index and micellar diameter were employed to compare and contrast the two methodologies. No significant differences (p < 0.05) were observed between the outcomes obtained from both methods, irrespective of the concentrations of the drugs. The Direct Method exhibited comparable levels of efficiency to the conventional approach. The study effectively established the Direct Method as a rapid and efficient substitute for surfactant NMs synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be available upon request.

References

  1. Rathee A, et al. Simultaneous determination of Posaconazole and Hemp Seed Oil in Nanomicelles through RP-HPLC via a quality-by-design Approach. ACS Omega. 2023;8(33):30057–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen J, et al. Pioglitazone-Loaded Cartilage-Targeted Nanomicelles (Pio@C-HA-DOs) for Osteoarthritis Treatment. Int J Nanomed. 2023;18:5871–90.

    Article  CAS  Google Scholar 

  3. Sripetthong S et al. Preparation of Self-Assembled, curcumin-loaded Nano-Micelles using Quarternized Chitosan-Vanillin Imine (QCS-Vani imine) conjugate and evaluation of synergistic Anticancer Effect with Cisplatin. J Funct Biomater, 2023. 14(10).

  4. Russi M, et al. Some things old, new and borrowed: delivery of dabrafenib and vemurafenib to melanoma cells via self-assembled nanomicelles based on an amphiphilic dendrimer. Eur J Pharm Sci. 2023;180:106311.

    Article  CAS  PubMed  Google Scholar 

  5. Yang Y, et al. Redox-responsive nanomicelles with intracellular targeting and programmable drug release for targeted Tumor Therapy. Curr Drug Deliv. 2024;21(2):295–307.

    Article  CAS  PubMed  Google Scholar 

  6. Cholkar K, et al. Optimization of dexamethasone mixed nanomicellar formulation. AAPS PharmSciTech. 2014;15(6):1454–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cholkar K, Gilger BC, Mitra AK. Topical delivery of aqueous micellar resolvin E1 analog (RX-10045). Int J Pharm. 2016;498(1–2):326–34.

    Article  CAS  PubMed  Google Scholar 

  8. Uthaman S, Huh KM, Park IK. Tumor microenvironment-responsive nanoparticles for cancer theragnostic applications. Biomater Res. 2018;22:22.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vega-Villa KR, et al. Clinical toxicities of nanocarrier systems. Adv Drug Deliv Rev. 2008;60(8):929–38.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng L et al. Advances in Polymeric micelles: responsive and targeting approaches for Cancer Immunotherapy in the Tumor Microenvironment. Pharmaceutics, 2023. 15(11).

  11. Nasr M, et al. Folic acid grafted mixed polymeric micelles as a targeted delivery strategy for tamoxifen citrate in treatment of breast cancer. Drug Deliv Transl Res; 2023.

  12. Solanki R, et al. Folate Functionalized and Evodiamine-Loaded Pluronic Nanomicelles for Augmented Cervical Cancer Cell Killing. Macromol Biosci. 2023;23(9):e2300077.

    Article  PubMed  Google Scholar 

  13. Mpekris F, et al. Pirfenidone-loaded polymeric micelles as an effective mechanotherapeutic to Potentiate Immunotherapy in Mouse Tumor models. ACS Nano; 2023.

  14. Shamsheer R, et al. Preparation and characterization of Capsaicin Encapsulated Polymeric micelles and studies of synergism with nicotinic acids as potential anticancer nanomedicines. J Pharm Bioallied Sci. 2023;15(3):107–25.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Patel HS, et al. Design, Development, and evaluation of SA-F127:TPGS polymeric mixed micelles for Improved Delivery of Glipizide Drug: In-vitro, ex-vivo, and In-vivo investigations. AAPS PharmSciTech. 2023;24(8):213.

    Article  CAS  PubMed  Google Scholar 

  16. Firozian F, et al. Cationic Dextran Stearate (Dex-St-GTMAC): synthesis and evaluation as polymeric micelles for Indomethacin corneal penetration. ACS Omega. 2023;8(41):38092–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaushal N, et al. Polymeric micelles loaded in situ gel with prednisolone acetate for ocular inflammation: development and evaluation. Nanomed (Lond). 2023;18(20):1383–98.

    Article  CAS  Google Scholar 

  18. Han B, et al. Reduction-responsive polymeric micelles for trans-corneal targeted delivery of microRNA-21-5p and glaucoma-specific gene therapy. J Mater Chem B. 2023;11(43):10433–45.

    Article  CAS  PubMed  Google Scholar 

  19. Binkhathlan Z, et al. Role of polymeric micelles in Ocular Drug Delivery: an overview of decades of Research. Mol Pharm. 2023;20(11):5359–82.

    Article  CAS  PubMed  Google Scholar 

  20. Vaishya RD, et al. Novel dexamethasone-loaded nanomicelles for the intermediate and posterior segment uveitis. AAPS PharmSciTech. 2014;15(5):1238–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koo OM, Rubinstein I, Onyuksel H. Camptothecin in sterically stabilized phospholipid micelles: a novel nanomedicine. Nanomedicine. 2005;1(1):77–84.

    Article  CAS  PubMed  Google Scholar 

  22. Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198–214.

    Article  CAS  PubMed  Google Scholar 

  23. Sutton D, et al. Functionalized micellar systems for cancer targeted drug delivery. Pharm Res. 2007;24(6):1029–46.

    Article  CAS  PubMed  Google Scholar 

  24. Oerlemans C, et al. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res. 2010;27(12):2569–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Capco DGe, Chen Ye. Nanomaterial: impacts on cell biology and medicine. Advances in Experimental Medicine and Biology. 2014: Springer.

  26. Lens A, Nemeth SC, Ledford JK. Ocular anatomy and physiology. 2nd ed. Thorofare, NJ: SLACK; 2008.

    Google Scholar 

  27. Sun Q et al. The spontaneous vesicle-micelle transition in a Catanionic surfactant system: a Chemical Trapping Study. Molecules, 2023. 28(16).

  28. Thompson KD, et al. The amphoteric surfactant N,N-Dimethyldodecylamine N-Oxide unfolds β-Lactoglobulin above the critical Micelle Concentration. Langmuir. 2022;38(13):4090–101.

    Article  CAS  PubMed  Google Scholar 

  29. Ghezzi M et al. Improvement of Imiquimod Solubilization and skin Retention via TPGS micelles: exploiting the Co-solubilizing Effect of Oleic Acid. Pharmaceutics, 2021. 13(9).

  30. Sammalkorpi M, Karttunen M, Haataja M. Ionic surfactant aggregates in saline solutions: sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride (CaCl(2)). J Phys Chem B. 2009;113(17):5863–70.

    Article  CAS  PubMed  Google Scholar 

  31. Li L et al. Application of Nanomicelles in Enhancing Bioavailability and Biological efficacy of bioactive nutrients. Polym (Basel), 2022. 14(16).

  32. Luschmann C, et al. Ocular delivery systems for poorly soluble drugs: an in-vivo evaluation. Int J Pharm. 2013;455(1–2):331–7.

    Article  CAS  PubMed  Google Scholar 

  33. Mukherjee I, Moulik SP, Rakshit AK. Tensiometric determination of Gibbs surface excess and micelle point: a critical revisit. J Colloid Interface Sci. 2013;394:329–36.

    Article  CAS  PubMed  Google Scholar 

  34. Harada A, Kataoka K. Novel Polyion Complex Micelles entrapping enzyme molecules in the core. 2. Characterization of the Micelles prepared at Nonstoichiometric Mixing ratios. Langmuir. 1999;15(12):4208–12.

    Article  CAS  Google Scholar 

  35. Zhang GD, et al. Polyion complex micelles entrapping cationic dendrimer porphyrin: effective photosensitizer for photodynamic therapy of cancer. J Control Release. 2003;93(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  36. Itaka K, et al. Polyion complex micelles from plasmid DNA and poly(ethylene glycol)-poly(L-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency. Biomaterials. 2003;24(24):4495–506.

    Article  CAS  PubMed  Google Scholar 

  37. Katayose S, Kataoka K. Water-Soluble Polyion Complex Associates of DNA and poly(ethylene glycol) – poly(l-lysine) Block Copolymer. Bioconjug Chem. 1997;8(5):702–7.

    Article  CAS  PubMed  Google Scholar 

  38. Paraiso WKD, et al. Poly-ion complex micelles effectively deliver CoA-conjugated CPT1A inhibitors to modulate lipid metabolism in brain cells. Biomater Sci. 2021;9(21):7076–91.

    Article  CAS  PubMed  Google Scholar 

  39. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev. 2001;47(1):113–31.

    Article  CAS  PubMed  Google Scholar 

  40. Castro E, et al. Size control of styrene oxide – ethylene oxide diblock copolymer aggregates with classical surfactants: DLS, TEM, and ITC study. Biomacromolecules. 2005;6(3):1438–47.

    Article  CAS  PubMed  Google Scholar 

  41. Harada A, Kataoka K. Formation of Polyion Complex Micelles in an aqueous milieu from a pair of oppositely-charged Block copolymers with Poly(ethylene glycol) segments. Macromolecules. 1995;28(15):5294–9.

    Article  CAS  Google Scholar 

  42. Kataoka K, et al. Spontaneous formation of Polyion Complex Micelles with narrow distribution from Antisense Oligonucleotide and Cationic Block Copolymer in physiological saline. Macromolecules. 1996;29(26):8556–7.

    Article  CAS  Google Scholar 

  43. Kabanov AV, et al. Water-soluble block polycations as carriers for oligonucleotide delivery. Bioconjug Chem. 1995;6(6):639–43.

    Article  CAS  PubMed  Google Scholar 

  44. Soliman GM. Polysaccharide-based Polyion Complex Micelles as New Delivery Systems for HydrophilicCationic Drugs. 2010.

  45. Garnier S, Laschewsky A. New Amphiphilic Diblock copolymers: surfactant properties and Solubilization in their Micelles. Langmuir. 2006;22(9):4044–53.

    Article  CAS  PubMed  Google Scholar 

  46. Nagayama S, et al. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm. 2007;342(1–2):215–21.

    Article  CAS  PubMed  Google Scholar 

  47. Fournier E, et al. A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharm Res. 2004;21(6):962–8.

    Article  CAS  PubMed  Google Scholar 

  48. Cholkar K, et al. Nanomicellar Topical Aqueous Drop Formulation of Rapamycin for back-of-the-Eye Delivery. AAPS PharmSciTech. 2015;16(3):610–22.

    Article  CAS  PubMed  Google Scholar 

  49. Cholkar K, Gilger BC, Mitra AK. Topical, aqueous, clear Cyclosporine Formulation design for anterior and posterior ocular delivery. Transl Vis Sci Technol. 2015;4(3):1.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Staven V, et al. Utilization of the tyndall effect for enhanced visual detection of particles in compatibility testing of intravenous fluids: validity and reliability. PDA J Pharm Sci Technol. 2015;69(2):270–83.

    Article  PubMed  Google Scholar 

  51. Shakeel F, et al. Celecoxib nanoemulsion: skin permeation mechanism and bioavailability assessment. J Drug Target. 2008;16(10):733–40.

    Article  CAS  PubMed  Google Scholar 

  52. Suksiriworapong J, et al. Development and characterization of lyophilized diazepam-loaded polymeric micelles. AAPS PharmSciTech. 2014;15(1):52–64.

    Article  CAS  PubMed  Google Scholar 

  53. Ai X, et al. Thin-film hydration preparation method and stability test of DOX-loaded disulfide-linked polyethylene glycol 5000-lysine-di-tocopherol succinate nanomicelles. Asian J Pharm Sci. 2014;9(5):244–50.

    Article  Google Scholar 

  54. Yue P-F, et al. The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion. AAPS PharmSciTech. 2009;10(2):376–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cekić N, et al. A full factorial design in the formulation of diazepam parenteral nanoemulsions: physicochemical characterization and stability evaluation. Adv Technol. 2015;4(1):9.

    Google Scholar 

  56. Abou Assi R et al. Liquid and solid self-emulsifying drug Delivery systems (SEDDs) as carriers for the oral delivery of azithromycin: optimization, in Vitro characterization and Stability Assessment. Pharmaceutics, 2020. 12(11).

  57. Eid AM, et al. Antibacterial activity of Fusidic Acid and Sodium Fusidate Nanoparticles Incorporated in Pine Oil Nanoemulgel. Int J Nanomed. 2019;14:9411–21.

    Article  CAS  Google Scholar 

  58. Rao M et al. Optimization of Metronidazole Emulgel J Pharm (Cairo), 2013. 2013: p. 501082.

Download references

Funding

Not financially supported.

Author information

Authors and Affiliations

Authors

Contributions

The authors have contributed to writing, designing, compiling and editing the final manuscript.

Corresponding author

Correspondence to Mohammed S. Al-lami.

Ethics declarations

Conflict of Interest

The authors declare no potential conflicts of interest concerning the research, authorship, and publication of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-lami, M.S., Alshawi, M.A. & Saker, F.M. A Simple Approach to Preparation of Surfactant Nano-Micelles Loaded Drugs. J Pharm Innov 19, 21 (2024). https://doi.org/10.1007/s12247-024-09827-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12247-024-09827-9

Keywords

Navigation