Skip to main content

Advertisement

Log in

Quality by Design (QbD) based Formulation Optimization of Isoniazid Loaded Novel Nanostructured Lipid Carriers for Controlled Release Effect

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Background

The emergence of resistance to isoniazid is widespread associated with high drug doses and longer duration of treatment which reduces the probability of getting success in the cure of tuberculosis.

Purpose

This research work aimed to develop novel nanostructured lipid carriers (NLCs) for the controlled release effect of isoniazid (INZ) to reduce the drug dose, dosing frequency, and dose-associated adverse effects.

Methods

Quality by Design (QbD) approach was used to optimize the lipid combination for NLCs using response surface methodology (RSM)-central composite rotatable design (CCRD). The independent factors were investigated for their effects on dependent variables. The formulation with maximum desirability value was selected as an optimized formulation and selected for various evaluation parameters.

Results

The final optimized (INZ-NLC) formulation was evaluated for drug release kinetics and found to follow the Korsmeyer-Peppas model indicating an erosion-controlled non-Fickian drug release process. The polydispersity index (PDI) and zeta potential (ZP) were also measured. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) study revealed a loss of crystallinity of the drug within the INZ-NLC formulation. Transmission electron microscope (TEM) photomicrographs showed the drug-loaded spherical particles of the optimized nanocarrier formulation. Stability studies suggested that the optimized INZ-NLC formulation was best stable for 6 months.

Conclusion

This study reports the successful development of the lipid combination to provide a controlled release effect to a hydrophilic drug (isoniazid) for reducing the dose and dosing frequency after pulmonary administration for better management in the treatment of tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

The represented data is original, unbiased, and accurate representation of research.

Code Availability

The trail versions of both the software Design Expert® v 13 and Prism 9.1.0® were used to compute the presented results.

References

  1. Zomorodbakhsh S, Abbasian Y, Naghinejad M, Sheikhpour M. The Effects study of isoniazid conjugated multi-wall carbon nanotubes nanofluid on Mycobacterium tuberculosis. Int J Nanomed. 2020;15:5901. https://doi.org/10.2147/IJN.S251524.

    Article  CAS  Google Scholar 

  2. Pandit S, Roy S, Pillai J, Banerjee S. Formulation, and intracellular trafficking of lipid–drug conjugate nanoparticles containing a hydrophilic antitubercular drug for improved intracellular delivery to human macrophages. ACS Omega. 2020;5(9):4433–48. https://doi.org/10.1021/acsomega.9b03523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Nair R, Priya KV, Kumar KA, Badivaddin TM, Sevukarajan M. Formulation, and evaluation of solid lipid nanoparticles of water-soluble drug: isoniazid. J Pharm Sci Res. 2011;3(5):1256.

    CAS  Google Scholar 

  4. Singh M, Guzman-Aranguez A, Hussain A, Srinivas CS, Kaur IP. Solid lipid nanoparticles for ocular delivery of isoniazid: evaluation, proof of concept, and in vivo safety & kinetics. Nanomedicine. 2019;14(4):465–91. https://doi.org/10.2217/nnm-2018-0278.

    Article  PubMed  CAS  Google Scholar 

  5. Kalombo L, Lemmer Y, Semete-Makokotlela B, Ramalapa B, Nkuna P, Booysen LL, Swai HS. Spray-dried, nanoencapsulation, multi-drug anti-tuberculosis therapy aimed at once-weekly administration for the duration of treatment. Nanomaterials. 2019;9(8):1167. https://doi.org/10.3390/nano9081167.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Liu Q, Guan J, Qin L, Zhang X, Mao S. Physicochemical properties affecting the fate of nanoparticles in pulmonary drug delivery. Drug Discov Today. 2020;25(1):150–9. https://doi.org/10.1016/j.drudis.2019.09.023.

    Article  PubMed  CAS  Google Scholar 

  7. Zhang X, Liu J, Qiao H, Liu H, Ni J, Zhang W, Shi Y. Formulation optimization of dihydroartemisinin nanostructured lipid carrier using RSM. Powder Technol. 2010;197(1–2):120–8. https://doi.org/10.1016/j.powtec.2009.09.004.

    Article  CAS  Google Scholar 

  8. Qizilbash FF, Ashhar MU, Zafar A, Qamar Z, Ali J, Baboota S, Ali A. Thymoquinone-enriched naringenin-loaded nanostructured lipid carrier for brain delivery via nasal route: in vitro prospect and in vivo therapeutic efficacy for the treatment of depression. Pharmaceutics, 2022;14(3):656. https://doi.org/10.3390/pharmaceutics14030656.

  9. Spandana AKM, Natrajan J, Thirumaleshwar S, Kumar SH. A review of the preparation, characterization and application of nanostructured lipid carriers. Int J Res Pharm Sci. 2020. https://doi.org/10.26452/ijrps.v11i1.1946.

  10. Ashwini M, Srividya R, Johl S. Topical and transdermal benefits of nanostructured lipid carriers. Current Trends in Biotechnology & Pharmacy. 2019;13(2):199–211.

    CAS  Google Scholar 

  11. González-Fernández FM, Bianchera A, Gasco P, Nicoli S, Pescina S. Lipid-based nanocarriers for ophthalmic administration: towards experimental design implementation. Pharmaceutics. 2021;13(4):447. https://doi.org/10.3390/pharmaceutics13040447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Madgulkar AR, Bhalekar M, Shiradkar MR, Damle M, Rode R. Compritol and Precirol: innovative pharmaceutical excipients. Asian Journal of Chemistry19(1), 454. Jain, K., Sood, S., & Gowthamarajan, K. (2015). Optimization of artemether-loaded NLC for intranasal delivery using central composite design. Drug delivery. 2007;22(7):940–954. https://doi.org/10.3109/10717544.2014.885999.

  13. Zafar A, Alruwaili NK, Imam SS, Yasir M, Alsaidan OA, Alquraini A, Ghoneim MM. Development and optimization of nanolipid-based formulation of diclofenac sodium: in vitro characterization and preclinical evaluation. Pharmaceutics. 2022;14(3):507. https://doi.org/10.3390/pharmaceutics14030507.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Pinto F, de Barros DP, Reis C, Fonseca LP. Optimization of nanostructured lipid carriers loaded with retinoids by central composite design. J Mol Liq. 2019;293:111468. https://doi.org/10.1016/j.molliq.2019.111468.

  15. Nemati E, Azami A, Mokhtarzadeh A, Rahbar Saadat Y, Omidi Y, Dolatabadi EN, J. Formulation, and characterization of ethambutol loaded nanostructured lipid carrier. Lat Am J Pharm. 2017;36(2):247–52.

    CAS  Google Scholar 

  16. Ghanem HA, Nasr AM, Hassan TH, Elkhoudary MM, Alshaman R, Alattar A, Gad S. Comprehensive study of atorvastatin nanostructured lipid carriers through multivariate conceptualization and optimization. Pharmaceutics. 2021;13(2):178. https://doi.org/10.3390/pharmaceutics13020178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Do Prado AH, Araújo VHS, Eloy JO, Fonseca-Santos B, Pereira-da-Silva MA, Peccinini RG, Chorilli M. Synthesis and characterization of nanostructured lipid nanocarriers for enhanced sun protection factor of octyl p-methoxycinnamate. AAPS PharmSciTech. 2020;21:1–9. https://doi.org/10.1208/s12249-019-1547-0.

    Article  CAS  Google Scholar 

  18. Zafar A. Development of oral lipid based nano-formulation of dapagliflozin: optimization, in vitro characterization and ex vivo intestinal permeation study. J Oleo Sci. 2020;69(11):1389–401. https://doi.org/10.5650/jos.ess20162.

    Article  PubMed  CAS  Google Scholar 

  19. Patil-Gadhe A, Pokharkar V. Montelukast-loaded nanostructured lipid carriers: part I—oral bioavailability improvement. Eur J Pharm Biopharm. 2014;88(1):160–8. https://doi.org/10.1016/j.ejpb.2014.05.019.

    Article  PubMed  CAS  Google Scholar 

  20. Fernandes AV, Pydi CR, Verma R, Jose J, Kumar L. Design, preparation and in vitro characterizations of fluconazole loaded nanostructured lipid carriers. Braz J Pharm Sci. 2020:56. https://doi.org/10.1590/s2175-97902019000318069.

  21. Otarola JJ, Solis AKC, Farias ME, Garrido M, Correa NM, Molina PG. Piroxicam-loaded nanostructured lipid carriers gel: design and characterization by square wave voltammetry. Colloids and Surfaces A: Physicochem Eng Asp. 2020;606:125396. https://doi.org/10.1016/j.colsurfa.2020.125396.

  22. Kataria D, Zafar A, Ali J, Khatoon K, Khan S, Imam SS, Ali A. Formulation of lipid-based nanocarriers of lacidipine for improvement of oral delivery: Box-Behnken design optimization, in vitro, ex vivo, and preclinical assessment. Assay Drug Dev Technol. 2022;20(1):5–21. https://doi.org/10.1089/adt.2021.084.

    Article  PubMed  CAS  Google Scholar 

  23. Elkomy MH, Elmowafy M, Shalaby K, Azmy AF, Ahmad N, Zafar A, Eid HM. Development and machine-learning optimization of mucoadhesive nanostructured lipid carriers loaded with fluconazole for treatment of oral candidiasis. Drug Dev Ind Pharm. 2021;47(2):246–58. https://doi.org/10.1080/03639045.2020.1871005.

    Article  PubMed  CAS  Google Scholar 

  24. Nagaich U, Gulati N. Nanostructured lipid carriers (NLC) based controlled release topical gel of clobetasol propionate: design and in vivo characterization. Drug Deliv Transl Res. 2016;6(3):289–98. https://doi.org/10.1007/s13346-016-0291-1.

    Article  PubMed  CAS  Google Scholar 

  25. Singh Hallan S, Sguizzato M, Pavoni G, Baldisserotto A, Drechsler M, Mariani P, Cortesi R. Ellagic acid containing nanostructured lipid carriers for topical application: a preliminary study. Molecules. 2020;25(6):1449. https://doi.org/10.3390/molecules25061449.

  26. Singh G, Srivastava AK. Stability study of optimized nanostructure lipid carrier system (NLC): a paradigmatic approach. Int J Adv Sci Eng Technol. 2017;5(3):80–2.

    Google Scholar 

  27. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles, and their targeted delivery applications. Molecules. 2020;25(9):2193. https://doi.org/10.3390/molecules25092193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mohamed AI, Abd-Motagaly AME, Ahmed OA, Amin S, Mohamed Ali AI. Investigation of drug–polymer compatibility using chemometric-assisted UV-spectrophotometry. Pharmaceutics. 2017;9(1):7.https://doi.org/10.3390/pharmaceutics9010007.

  29. Gunasekaran S, Sailatha E, Seshadri S, Kumaresan S. FTIR, FT Raman spectra and molecular structural confirmation of isoniazid. Indian J Pure Appl Phys. 2009;47:12–8.

    CAS  Google Scholar 

  30. Acevedo-Morantes CY, Acevedo-Morantes MT, Suleiman-Rosado D, Ramírez-Vick JE. Evaluation of the cytotoxic effect of camptothecin solid lipid nanoparticles on MCF7 cells. Drug Delivery. 2013;20(8):338–48. https://doi.org/10.3109/10717544.2013.834412.

    Article  PubMed  CAS  Google Scholar 

  31. Baruah UK, Gowthamarajan K, Ravisankar V, Karri VVSR, Simhadri PK, Singh V, Babu PP. Design, characterization and antimalarial efficacy of PEGylated galactosylated nano lipid carriers of primaquine phosphate. Artificial cells, nanomedicine, and biotechnology. 2018;46(8):1809–29. https://doi.org/10.1080/21691401.2017.1394870.

    Article  PubMed  CAS  Google Scholar 

  32. Abdullah BM, Salih N, Salimon J. Optimization of the chemoenzymatic mono-epoxidation of linoleic acid using D-optimal design. J Saudi Chem Soc. 2014;18(3):276–87. https://doi.org/10.1016/j.jscs.2011.07.012.

    Article  CAS  Google Scholar 

  33. Rohit B, Pal KI. A method to prepare solid lipid nanoparticles with improved entrapment efficiency of hydrophilic drugs. Curr Nanosci. 2013;9(2):211–20. https://doi.org/10.2174/1573413711309020008.

    Article  CAS  Google Scholar 

  34. Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014;11(12):1865–83. https://doi.org/10.1517/17425247.2014.935335.

    Article  PubMed  CAS  Google Scholar 

  35. Afinjuomo F, Barclay TG, Parikh A, Chung R, Song Y, Nagalingam G, Garg S. Synthesis and characterization of pH-sensitive inulin conjugate of isoniazid for monocyte-targeted delivery. Pharmaceutics. 2019;11(11):555. https://doi.org/10.3390/pharmaceutics11110555.

  36. Gordillo-Galeano A, Mora-Huertas CE. Solid lipid nanoparticles and nanostructured lipid carriers: a review emphasizing on particle structure and drug release. Eur J Pharm Biopharm. 2018;133:285–308. https://doi.org/10.1016/j.ejpb.2018.10.017.

    Article  PubMed  CAS  Google Scholar 

  37. Paarakh MP, Jose PA, Setty CM, Peterchristoper GV. Release kinetics—concepts and applications. Int J Pharm Res Tech (IJPRT). 2018;8(1):12–20. https://doi.org/10.31838/ijprt/08.01.02.

  38. Rohilla S, Bhatt D, Ahalwat S. Effect processing variables on the characteristics of itraconazole hollow microspheres. Int J Appl Pharm. 2019;108–115. https://doi.org/10.22159/ijap.2019v11i6.35098.

  39. Garcês A, Amaral MH, Lobo JS, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: a review. Eur J Pharm Sci. 2018;112:159–67. https://doi.org/10.1016/j.ejps.2017.11.023.

    Article  PubMed  CAS  Google Scholar 

  40. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Mozafari MR. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. https://doi.org/10.3390/pharmaceutics10020057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Mura P, Maestrelli F, D’Ambrosio M, Luceri C, Cirri M. Evaluation and comparison of solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as vectors to develop hydrochlorothiazide effective and safe pediatric oral liquid formulations. Pharmaceutics. 2021;13(4):437. https://doi.org/10.3390/pharmaceutics13040437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wang N, Cheng X, Li N, Wang H, Chen H. Nanocarriers and their loading strategies. Adv Healthc Mater. 8(6):1801002. https://doi.org/10.1002/adhm.201801002.

  43. Caputo F, Clogston J, Calzolai L, Rösslein M, Prina-Mello A. Measuring particle size distribution of nanoparticle enabled medicinal products, the joint view of EUNCL and NCI-NCL. A step-by-step approach combining orthogonal measurements with increasing complexity. J Control Release. 2019;299:31–43. https://doi.org/10.1016/j.jconrel.2019.02.030.

    Article  PubMed  CAS  Google Scholar 

  44. Ashraf MA, Peng W, Zare Y, Rhee KY. Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res Lett. 2018;13(1):1–7. https://doi.org/10.1186/s11671-018-2624-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. Chanda, Department of Electron Microscopy, AIIMS, New Delhi for the TEM analysis and Dr. Ashish Aggarwal, Department of Physics, Guru Jambheshwar University of Science and Technology, Hisar for the PXRD analysis. The authors acknowledge that this work is a part of PhD research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaveta Ahalwat.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Future Prospect

This formulation is under investigation for its in vitro pulmonary behaviour, in vivo pharmacokinetics, and toxicity studies.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahalwat, S., Bhatt, D.C. & Rohilla, S. Quality by Design (QbD) based Formulation Optimization of Isoniazid Loaded Novel Nanostructured Lipid Carriers for Controlled Release Effect. J Pharm Innov 18, 1685–1700 (2023). https://doi.org/10.1007/s12247-023-09749-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-023-09749-y

Keywords

Navigation