Skip to main content

Advertisement

Log in

Fabrication of Zein-Chitosan-Zein Sandwich-Like Nanofibers Containing Teicoplanin as a Local Antibacterial Drug Delivery System

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The parenteral antibiotic therapies have always been associated with several limitations that could be overcome by nano-based drug delivery systems. In this study, we aimed to fabricate teicoplanin-loaded zein-chitosan (CS)-zein sandwich-like electrospun nanofibers for targeted drug delivery.

Methods

The sandwich-like structures of zein-CS/teicoplanin-zein nanofibers were fabricated by the electrospinning process. Nanofiber membranes were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), drug encapsulation efficiency, in vitro release profile, and tensile strength studies. Finally, the antibacterial activity of the neat teicoplanin and zein-CS/teicoplanin-zein nanofibers was evaluated in static and dynamic conditions.

Results

SEM images demonstrated the use of suitable electrospinning conditions that led to the fabrication of the smooth and bead-free nanofibers with nanoscale diameter formation. FTIR and DSC analysis confirmed the presence and uniform distribution of the drug and also the interaction between the teicoplanin and chitosan in the formulation. The concentration of teicoplanin has a direct effect on the increase of mechanical tensile properties of sandwich-like nanofibers. In vitro release profile assay showed a burst release of teicoplanin during the first 24 h followed by a slow-release profile for 19 days. Finally, zein-CS/teicoplanin-zein nanofiber membranes showed significantly higher antibacterial activity compared with neat zein-CS-zein nanofibers and teicoplanin alone at the same concentration.

Conclusion

These results indicate that zein-CS-zein nanofibers would be a prospective candidate for targeted drug delivery in the treatment of local infections.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gomes D, Pereira M, Bettencourt A. Osteomyelitis: an overview of antimicrobial therapy. Brazilian J Pharmaceut Sci. 2013;49:13–27.

    Article  CAS  Google Scholar 

  2. Ford CA, Cassat JE. Advances in the local and targeted delivery of anti-infective agents for management of osteomyelitis. Expert Rev Anti Infect Ther. 2017;15:851–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for global infectious diseases. Nat Nanotechnol. 2021;16:369–84.

    Article  CAS  PubMed  Google Scholar 

  4. Gao W, Chen Y, Zhang Y, Zhang Q, Zhang L. Nanoparticle-based local antimicrobial drug delivery. Adv Drug Deliv Rev. 2018;127:46–57.

    Article  CAS  PubMed  Google Scholar 

  5. Abbaspour M, Iraji P, Mahmoudi Z, Rahiman N, Akhgari A. Design and physico-mechanical evaluation of fast-dissolving valsartan polymeric drug delivery system by electrospinning method. Iranian J Basic Med Sci. 2021;24:1683–94.

  6. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325–47.

    Article  CAS  PubMed  Google Scholar 

  7. Yahia S, Khalil IA, El-Sherbiny IM. Sandwich-like nanofibrous scaffolds for bone tissue regeneration. ACS Appl Mater Interfaces. 2019;11:28610–20.

    Article  CAS  PubMed  Google Scholar 

  8. Kamath SM, Sridhar K, Jaison D, Gopinath V, Ibrahim BKM, Gupta N, et al. Fabrication of tri-layered electrospun polycaprolactone mats with improved sustained drug release profile. Sci Rep. 2020;10:18179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Immich APS, Arias ML, Carreras N, Boemo RL, Tornero JA. Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen. Mater Sci Eng, C. 2013;33:4002–8.

    Article  CAS  Google Scholar 

  10. Avelelas F, Horta A, Pinto LFV, Cotrim Marques S, Marques Nunes P, Pedrosa R, et al. Antifungal and antioxidant properties of chitosan polymers obtained from nontraditional polybius henslowii sources. Mar Drugs. 2019;17.

  11. Li J, Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. Eur Polym J. 2020;138: 109984.

    Article  CAS  Google Scholar 

  12. Abedian Z, Moghadamnia AA, Zabihi E, Pourbagher R, Ghasemi M, Nouri HR, et al. Anticancer properties of chitosan against osteosarcoma, breast cancer and cervical cancer cell lines. Caspian J Intern Med. 2019;10:439–46.

    PubMed  PubMed Central  Google Scholar 

  13. Okamoto Y, Kawakami K, Miyatake K, Morimoto M, Shigemasa Y, Minami S. Analgesic effects of chitin and chitosan. Carbohyd Polym. 2002;49:249–52.

    Article  CAS  Google Scholar 

  14. Ustinova TM, Vengerovich NG, Glinko DK. Applications of chitosan as a polymer carrier for increasing the drugs’ bioavailability. Pharm Formulas. 2022;3:10–9.

  15. Sogias IA, Williams AC, Khutoryanskiy VV. Why is chitosan mucoadhesive? Biomacromol. 2008;9:1837–42.

    Article  CAS  Google Scholar 

  16. Cui C, Sun S, Wu S, Chen S, Ma J, Zhou F. Electrospun chitosan nanofibers for wound healing application. Eng Regen. 2021;2:82–90.

    Article  Google Scholar 

  17. Amiri N, Ajami S, Shahroodi A, Jannatabadi N, Amiri Darban S, Fazly Bazzaz BS, et al. Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. Int J Biol Macromol. 2020;162:645–56.

    Article  CAS  PubMed  Google Scholar 

  18. Kajdič S, Planinšek O, Gašperlin M, Kocbek P. Electrospun nanofibers for customized drug-delivery systems. J Drug Deliv Sci Technol. 2019;51:672–81.

    Article  Google Scholar 

  19. Mahanty A, Abbasi YF, Bera H, Chakraborty M, Al Maruf MA. Chapter 21 - Zein-based nanomaterials in drug delivery and biomedical applications. In: Bera H, Hossain CM, Saha S, editors. Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications. Academic Press. 2021;497–518. https://doi.org/10.1016/B978-0-12-820874-8.00006-3.

  20. Shinde P, Agraval H, Singh A, Yadav UCS, Kumar U. Synthesis of luteolin loaded zein nanoparticles for targeted cancer therapy improving bioavailability and efficacy. J Drug Deliv Sci Technol. 2019;52:369–78.

    Article  CAS  Google Scholar 

  21. Farris E, Brown DM, Ramer-Tait AE, Pannier AK. Chitosan-zein nano-in-microparticles capable of mediating in vivo transgene expression following oral delivery. J Control Release : Official J Control Release Soc. 2017;249:150–61.

    Article  CAS  PubMed  Google Scholar 

  22. Figueira D, Miguel S, Sá K, Correia I. Production and characterization of Polycaprolactone- Hyaluronic acid/ Chitosan- Zein electrospun bilayer nanofibrous membrane for tissue regeneration. Intl J Biol Macromole. 2016;93.

  23. Liang J, Yan H, Wang X, Zhou Y, Gao X, Puligundla P, et al. Encapsulation of epigallocatechin gallate in zein/chitosan nanoparticles for controlled applications in food systems. Food Chem. 2017;231:19–24.

    Article  CAS  PubMed  Google Scholar 

  24. Li M, Yu M. Development of a nanoparticle delivery system based on zein/polysaccharide complexes. J Food Sci. 2020;85:4108–17.

    Article  CAS  PubMed  Google Scholar 

  25. Singh S, Numan A, Somaily HH, Gorain B, Ranjan S, Rilla K, et al. Nano-enabled strategies to combat methicillin-resistant Staphylococcus aureus. Mater Sci Eng C. 2021. https://doi.org/10.1016/j.msec.2021.112384:112384.

  26. Campoli-Richards DM, Brogden RN, Faulds D. Teicoplanin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs. 1990;40:449–86.

  27. Peng KT, Chen CF, Chu IM, Li YM, Hsu WH, Hsu RW, et al. Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable thermosensitive hydrogel nanoparticles. Biomaterials. 2010;31:5227–36.

    Article  CAS  PubMed  Google Scholar 

  28. Jia WT, Luo SH, Zhang CQ, Wang JQ. In vitro and in vivo efficacies of teicoplanin-loaded calcium sulfate for treatment of chronic methicillin-resistant Staphylococcus aureus osteomyelitis. Antimicrob Agents Chemother. 2010;54:170–6.

    Article  CAS  PubMed  Google Scholar 

  29. Jia WT, Zhang X, Luo SH, Liu X, Huang WH, Rahaman MN, et al. Novel borate glass/chitosan composite as a delivery vehicle for teicoplanin in the treatment of chronic osteomyelitis. Acta Biomater. 2010;6:812–9.

    Article  CAS  PubMed  Google Scholar 

  30. Jia W-T, Zhang X, Zhang C-Q, Liu X, Huang W-H, Rahaman MN, et al. Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite. Int J Pharm. 2010;387:184–6.

    Article  CAS  PubMed  Google Scholar 

  31. Ziglam HM, Finch RG. Limitations of presently available glycopeptides in the treatment of Gram-positive infection. Clin Microbiol Infect. 2001;7:53–65.

    Article  CAS  PubMed  Google Scholar 

  32. Wilson AP. Clinical pharmacokinetics of teicoplanin. Clin Pharmacokinet. 2000;39:167–83.

    Article  CAS  PubMed  Google Scholar 

  33. Vimberg V. Teicoplanin-A New Use for an Old Drug in the COVID-19 Era? Pharmaceuticals (Basel, Switzerland). 2021;14:1227.

    Article  CAS  PubMed  Google Scholar 

  34. Ye P, Wei S, Luo C, Wang Q, Li A, Wei F. Long-Term Effect against Methicillin-Resistant Staphylococcus aureus of Emodin Released from Coaxial Electrospinning Nanofiber Membranes with a Biphasic Profile. Biomolecules. 2020;10.

  35. Kalalinia F, Taherzadeh Z, Jirofti N, Amiri N, Foroghinia N, Beheshti M, et al. Evaluation of wound healing efficiency of vancomycin-loaded electrospun chitosan/poly ethylene oxide nanofibers in full thickness wound model of rat. Int J Biol Macromol. 2021;177:100–10.

    Article  CAS  PubMed  Google Scholar 

  36. Abutaleb A, Lolla D, Aljuhani A, Shin H, Rajala J, Chase G. Effects of Surfactants on the Morphology and Properties of Electrospun Polyetherimide Fibers. Fibers. 2017;5:33.

    Article  Google Scholar 

  37. Zarei M, Samimi A, Khorram M, Abdi MM, Golestaneh SI. Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. Int J Biol Macromol. 2021;168:175–86.

    Article  CAS  PubMed  Google Scholar 

  38. Tan SH, Inai R, Kotaki M. Systematic Parameter Study for Ultra-Fine Fiber Fabrication Via Electrospinning Process. Polymer. 2005;46:6128–34.

    Article  CAS  Google Scholar 

  39. Mit-uppatham C, Nithitanakul M, Supaphol P. Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromol Chem Phys. 2004;205:2327–38.

    Article  CAS  Google Scholar 

  40. Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, et al. Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polymer J. 2005;41:409–21.

    Article  CAS  Google Scholar 

  41. Amiri N, Ajami S, Shahroudi A, Jannatabadi N, Amiri Darban S, Fazly Bazzaz BS, et al. Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. Int J Biol Macromole. 2020;162.

  42. Baji A, Mai Y-W, Wong S-C, Abtahi M, Chen P. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Compos Sci Technol. 2010;70:703–18.

    Article  CAS  Google Scholar 

  43. Patrojanasophon P, Tidjarat S, Opanasopit P, Ngawhirunpat T, Rojanarata T. Influence of nanofiber alignment on the release of a water-soluble drug from cellulose acetate nanofibers. Saudi Pharm J. 2020;28:1210–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Teaima MH, Elasaly MK, Omar SA, El-Nabarawi MA, Shoueir KR. Wound healing activities of polyurethane modified chitosan nanofibers loaded with different concentrations of linezolid in an experimental model of diabetes. J Drug Deliv Sci Technol. 2022;67: 102982.

    Article  CAS  Google Scholar 

  45. Zamani M, Prabhakaran MP, Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomedicine. 2013;8:2997–3017.

    PubMed  PubMed Central  Google Scholar 

  46. de Vries A, Nikiforidis CV, Scholten E. Natural amphiphilic proteins as tri-block Janus particles: Self-sorting into thermo-responsive gels. EPL (Europhysics Letters). 2014;107:58003.

    Article  Google Scholar 

  47. AnjiReddy K, Karpagam S. Chitosan nanofilm and electrospun nanofiber for quick drug release in the treatment of Alzheimer’s disease: In vitro and in vivo evaluation. Int J Biol Macromol. 2017;105:131–42.

    Article  CAS  PubMed  Google Scholar 

  48. Hsieh YC, Lin YC, Huang YC. Vancomycin, teicoplanin, daptomycin, and linezolid MIC creep in methicillin-resistant Staphylococcus aureus is associated with clonality. Medicine (Baltimore). 2016;95: e5060.

    Article  CAS  PubMed  Google Scholar 

  49. Gao P, Nie X, Zou M, Shi Y, Cheng G. Recent advances in materials for extended-release antibiotic delivery system. J Antibiot. 2011;64:625–34.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to precise their sincere gratifying to the Research Council of Mashhad University of Medical Sciences, Mashhad, Iran, for financial support of this project. The results described in this paper were part of Pharm. D thesis of Saeed Khalatbari.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Kalalinia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Movaffagh, J., Nourollahian, T., Khalatbari, S. et al. Fabrication of Zein-Chitosan-Zein Sandwich-Like Nanofibers Containing Teicoplanin as a Local Antibacterial Drug Delivery System. J Pharm Innov 18, 911–922 (2023). https://doi.org/10.1007/s12247-022-09686-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-022-09686-2

Keywords

Navigation