Skip to main content
Log in

Recent Advances in Dissolution Testing and Their Use to Improve In Vitro–In Vivo Correlations in Oral Drug Formulations

  • Review Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Bioavailability of oral drug formulations is strongly dependent on the composition of the gastric and intestinal fluids and hydrodynamic conditions in the gastrointestinal tract. These affect the dissolution behavior of oral formulations and their subsequent absorption to the bloodstream. A detailed characterization of all these factors is almost impossible in an in vivo setting, which necessitates the use of in vitro experiments. However, the drug release/drug solubility information in the media representing the gastrointestinal tract obtained in an in vitro study is typically not directly determined in an in vivo experiment. Instead, it is more convenient to determine in vivo the drug concentration in plasma. In vitro–in vivo correlation (IVIVC) typically refers to mathematical relationships between in vitro dissolution behavior and in vivo drug concentration in plasma. IVIVC may be improved by approaches that better mimic in vivo conditions in an in vitro setting. These include mimicking of drug absorption and the composition and hydrodynamics of the release medium. Artificial gastrointestinal (GI) systems are designed to meet this objective. In this review, we discuss our current understanding of the IVIVC and the experimental approaches to improve the IVIVC. Some ex vivo approaches also fall within the scope of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shahiwala A. Formulation approaches in enhancement of patient compliance to oral drug therapy. Expert Opin Drug Deliv. 2011;8:1521–9. https://doi.org/10.1517/17425247.2011.628311.

    Article  CAS  PubMed  Google Scholar 

  2. Fallingborg J, Christensen LA, Ingeman-Nielsen M, Jacobsen BA, Abildgaard K, Rasmussen HH, et al. Measurement of gastrointestinal pH and regional transit times in normal children. J Pediatr Gastroenterol Nutr. 1990;11:211–4. https://doi.org/10.1097/00005176-199008000-00010.

    Article  CAS  PubMed  Google Scholar 

  3. Katori N, Aoyagi N, Terao T. Estimation of agitation intensity in the GI tract in humans and dogs based on in vitro/in vivo correlation. Pharm Res An Off J Am Assoc Pharm Sci. 1995;12:237–43. https://doi.org/10.1023/A:1016231010301.

    Article  CAS  Google Scholar 

  4. Shargel L, Yu AB. Applied biopharmaceutics & pharmacokinetics, Seventh Edition. 2016.

  5. Dahlgren D, Lennernäs H. Intestinal permeability and drug absorption: predictive experimental, computational and in vivo approaches. Pharmaceutics. 2019;11. https://doi.org/10.3390/pharmaceutics11080411.

  6. Vertzoni M, Augustijns P, Grimm M, Koziolek M, Lemmens G, Parrott N, et al. Impact of regional differences along the gastrointestinal tract of healthy adults on oral drug absorption: an UNGAP review. Eur J Pharm Sci. 2019;134:153–75. https://doi.org/10.1016/j.ejps.2019.04.013.

    Article  CAS  PubMed  Google Scholar 

  7. Czarnocka JK, Alhnan MA. Gastro-resistant characteristics of GRAS-grade enteric coatings for pharmaceutical and nutraceutical products. Int J Pharm. 2015;486:167–74. https://doi.org/10.1016/j.ijpharm.2015.03.039.

    Article  CAS  PubMed  Google Scholar 

  8. van der Merwe J, Steenekamp J, Steyn D, Hamman J. The role of functional excipients in solid oral dosage forms to overcome poor drug dissolution and bioavailability. Pharmaceutics. 2020;12. https://doi.org/10.3390/pharmaceutics12050393.

  9. Gao P, Morozowich W. Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin Drug Deliv. 2006;3:97–110. https://doi.org/10.1517/17425247.3.1.97.

    Article  CAS  PubMed  Google Scholar 

  10. Sriamornsak P, Thirawong N, Korkerd K. Swelling, erosion and release behavior of alginate-based matrix tablets. Eur J Pharm Biopharm. 2007;66:435–50. https://doi.org/10.1016/j.ejpb.2006.12.003.

    Article  CAS  PubMed  Google Scholar 

  11. Vrbanac H, Krese A. The influence of different mechanical stress on the release properties of HPMC matrix tablets in sucrose-NaCl media. J Drug Deliv Sci Technol. 2019;54:101246. https://doi.org/10.1016/j.jddst.2019.101246.

    Article  CAS  Google Scholar 

  12. Takieddin M, Fassihi R. A Novel approach in distinguishing between role of hydrodynamics and mechanical stresses similar to contraction forces of GI tract on drug release from modified release dosage forms. AAPS PharmSciTech. 2014;16:278–83. https://doi.org/10.1208/s12249-014-0225-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rowbotham DJ, Kimpson PM, Thompson HM. Gut motility and secretions. Found. Anesth., Elsevier Ltd; 2006, p. 739–51. https://doi.org/10.1016/B978-0-323-03707-5.50067-X.

  14. Smith ME, Morton DG. The small intestine. Dig. Syst., Elsevier; 2010, p. 107–27. https://doi.org/10.1016/B978-0-7020-3367-4.00007-4.

  15. McSweeney SE, O’Donoghue PM, Jhaveri K. Current and emerging techniques in gastrointestinal imaging. J Postgrad Med. 2010;56:109–16. https://doi.org/10.4103/0022-3859.65280.

  16. Frøkjær JB, Drewes AM, Gregersen H. Imaging of the gastrointestinal tract-novel technologies. World J Gastroenterol. 2009;15:160–8. https://doi.org/10.3748/wjg.15.160.

    Article  PubMed  PubMed Central  Google Scholar 

  17. LeBlond D. In vitro dissolution testing: statistical approaches and issues, Springer, Cham; 2016, p. 605–30. https://doi.org/10.1007/978-3-319-23558-5_23.

  18. Blanquet S, Zeijdner E, Beyssac E, Meunier J, Denis S, Havenaar R, et al. A dynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions. Pharm Res. 2004;21:585–91.

    Article  CAS  Google Scholar 

  19. Levine RR, McNary WF, Kornguth PJ, LeBlanc R. Histological reevaluation of everted gut technique for studying intestinal absorption. Eur J Pharmacol. 1970;9:211–9. https://doi.org/10.1016/0014-2999(70)90302-X.

    Article  CAS  PubMed  Google Scholar 

  20. Wilson TH, Wiseman G. The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J Physiol. 1954;123:116–25. https://doi.org/10.1113/jphysiol.1954.sp005036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shrivas M, Khunt D, Shrivas M, Choudhari M, Rathod R, Misra M. Advances in in vivo predictive dissolution testing of solid oral formulations: how closer to in vivo performance? J Pharm Innov. 2020;15:296–317. https://doi.org/10.1007/s12247-019-09392-6.

    Article  Google Scholar 

  22. Suarez-Sharp S, Li M, Duan J, Shah H, Seo P. Regulatory experience with in vivo in vitro correlations (IVIVC) in new drug applications. AAPS J. 2016;18:1379–90. https://doi.org/10.1208/s12248-016-9966-2.

    Article  CAS  PubMed  Google Scholar 

  23. Kostewicz ES, Abrahamsson B, Brewster M, Brouwers J, Butler J, Carlert S, et al. In vitro models for the prediction of in vivo performance of oral dosage forms. Eur J Pharm Sci. 2014;57:342–66. https://doi.org/10.1016/j.ejps.2013.08.024.

    Article  CAS  PubMed  Google Scholar 

  24. Dressman JB, Amidon GL, Reppas, Christos, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption immediate release dosage forms. Pharm Res. 1997;15:11–22.

  25. Zahirul M, Khan I. Dissolution testing for sustained or controlled release oral dosage forms and correlation with in vivo data: challenges and opportunities. Int J Pharm. 1996;140:131–43. https://doi.org/10.1016/0378-5173(96)04561-9.

    Article  Google Scholar 

  26. Schneider F, Koziolek M, Weitschies W. In vitro and in vivo test methods for the evaluation of gastroretentive dosage forms. Pharmaceutics. 2019;11. https://doi.org/10.3390/pharmaceutics11080416.

  27. Mudie DM, Amidon GL, Amidon GE. Physiological parameters for oral delivery and in vitro testing. Mol Pharm. 2010;7:1388–405. https://doi.org/10.1021/mp100149j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dahan A, Miller JM, Hilfinger JM, Yamashita S, Yu LX, Lennernäs H, et al. High-permeability criterion for BCS classification: segmental/pH dependent permeability considerations. Mol Pharm. 2010;7:1827–34. https://doi.org/10.1021/mp100175a.

    Article  CAS  PubMed  Google Scholar 

  29. Marques MRC, Loebenberg R, Almukainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 2011;18:15–28. https://doi.org/10.14227/DT180311P15.

  30. Bou-Chacra N, Melo KJC, Morales IAC, Stippler ES, Kesisoglou F, Yazdanian M, et al. Evolution of choice of solubility and dissolution media after two decades of Biopharmaceutical Classification System. AAPS J. 2017;19:989–1001. https://doi.org/10.1208/s12248-017-0085-5.

    Article  CAS  PubMed  Google Scholar 

  31. Mudie DM, Samiei N, Marshall DJ, Amidon GE, Bergström CAS. Selection of in vivo predictive dissolution media using drug substance and physiological properties. AAPS J. 2020;22:1–13. https://doi.org/10.1208/s12248-020-0417-8.

    Article  CAS  Google Scholar 

  32. Vertzoni M, Fotaki N, Nicolaides E, Reppas C, Kostewicz E, Stippler E, et al. Dissolution media simulating the intralumenal composition of the small intestine: physiological issues and practical aspects. J Pharm Pharmacol. 2004;56:453–62. https://doi.org/10.1211/0022357022935.

    Article  CAS  PubMed  Google Scholar 

  33. Klein S. The use of biorelevant dissolution media to forecast the in vivo performance of a drug. AAPS J. 2010;12:397–406. https://doi.org/10.1208/s12248-010-9203-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vertzoni M, Dressman J, Butler J, Hempenstall J, Reppas C. Simulation of fasting gastric conditions and its importance for the in vivo dissolution of lipophilic compounds. Eur J Pharm Biopharm. 2005;60:413–7. https://doi.org/10.1016/j.ejpb.2005.03.002.

    Article  CAS  PubMed  Google Scholar 

  35. Klein S, Dressman JB, Butler J, Hempenstall JM, Reppas C. Media to simulate the postprandial stomach I. Matching the physicochemical characteristics of standard breakfasts. J Pharm Pharmacol. 2004;56:605–10. https://doi.org/10.1211/0022357023367.

  36. Buckton G, Beezer AE, Chatham SM, Patel KK. In vitro dissolution testing of oral controlled release preparations in the presence of artificial foodstuffs. II. Probing drug/food interactions using microcalorimetry. Int J Pharm. 1989;56:151–7. https://doi.org/10.1016/0378-5173(89)90008-2.

  37. Vemula SK, Veerareddy PR. Development, evaluation and pharmacokinetics of time-dependent ketorolac tromethamine tablets. Expert Opin Drug Deliv. 2013;10:33–45. https://doi.org/10.1517/17425247.2013.743528.

    Article  CAS  PubMed  Google Scholar 

  38. Cheng C, Wu PC, Lee HY, Hsu KY. Development and validation of an in vitroein vivo correlation (IVIVC) model for propranolol hydrochloride extended-release matrix formulations. J Food Drug Anal. 2014;22:257–63. https://doi.org/10.1016/j.jfda.2013.09.016.

    Article  CAS  Google Scholar 

  39. Wong D, Larrabee S, Clifford K, Tremblay J, Friend DR. USP dissolution apparatus III (reciprocating cylinder) for screening of guar-based colonic delivery formulations. J Control Release. 1997;47:173–9. https://doi.org/10.1016/S0168-3659(97)01633-7.

    Article  CAS  Google Scholar 

  40. Klein S, Dressman JB. Comparison of drug release from metoprolol modified release dosage forms in single buffer versus a pH-gradient dissolution test. Dissolution Technol. 2006:6–12.

  41. Gibaldi M, Feldman S. Establishment of sink conditions in dissolution rate determinations. Theoretical considerations and application to nondisintegrating dosage forms. J Pharm Sci. 1967;56:1238–42. https://doi.org/10.1002/jps.2600561005.

  42. Costa P, Lobo JMS. Influence of dissolution medium agitation on release profiles of sustained-release tablets. Drug Dev Ind Pharm. 2001;27:811–7. https://doi.org/10.1081/DDC-100107244.

    Article  CAS  Google Scholar 

  43. Todaro V, Persoons T, Grove G, Healy AM, D’Arcy DM. Characterization and simulation of hydrodynamics in the paddle, basket and flow-through dissolution testing apparatuses-A review. Dissolution Technol. 2017;24:24–36. https://doi.org/10.14227/DT240317P24.

  44. McCarthy LG, Bradley G, Sexton JC, Corrigan OI, Healy AM. Computational fluid dynamics modeling of the paddle dissolution apparatus: agitation rate, mixing patterns, and fluid velocities. AAPS PharmSciTech. 2004;5:e31. https://doi.org/10.1208/pt050231.

    Article  PubMed  Google Scholar 

  45. Bai GE, Armenante PM. Hydrodynamic, mass transfer, and dissolution effects induced by tablet location during dissolution testing. J Pharm Sci. 2009;98:1511–31. https://doi.org/10.1002/jps.21512.

    Article  CAS  PubMed  Google Scholar 

  46. Ranjan A, Jha PK. Studying drug release through polymeric controlled release formulations in USP 2 apparatus using multiphysics simulation and experiments. Manuscr Unpubl. 2021.

  47. Sun DD, Ju TCR, Lee PI. Enhanced kinetic solubility profiles of indomethacin amorphous solid dispersions in poly(2-hydroxyethyl methacrylate) hydrogels. Eur J Pharm Biopharm. 2012;81:149–58. https://doi.org/10.1016/j.ejpb.2011.12.016.

    Article  CAS  PubMed  Google Scholar 

  48. Ilevbare GA, Taylor LS. Liquid-liquid phase separation in highly supersaturated aqueous solutions of poorly water-soluble drugs: implications for solubility enhancing formulations. Cryst Growth Des. 2013;13:1497–509. https://doi.org/10.1021/cg301679h.

    Article  CAS  Google Scholar 

  49. Sun DD, Wen H, Taylor LS. Non-sink dissolution conditions for predicting product quality and in vivo performance of supersaturating drug delivery systems. J Pharm Sci. 2016;105:2477–88. https://doi.org/10.1016/j.xphs.2016.03.024.

    Article  CAS  PubMed  Google Scholar 

  50. Marsac PJ, Li T, Taylor LS. Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm Res. 2009;26:139–51. https://doi.org/10.1007/s11095-008-9721-1.

    Article  CAS  PubMed  Google Scholar 

  51. Trasi NS, Purohit HS, Wen H, Sun DD, Taylor LS. Non-sink dissolution behavior and solubility limit of commercial tacrolimus amorphous formulations. J Pharm Sci. 2017;106:264–72. https://doi.org/10.1016/j.xphs.2016.09.016.

    Article  CAS  PubMed  Google Scholar 

  52. Katchen B, Symchowicz S. Correlation of dissolution rate and griseofulvin absorption in man. J Pharm Sci. 1967;56:1108–11. https://doi.org/10.1002/jps.2600560912.

    Article  CAS  PubMed  Google Scholar 

  53. Shah VP, Noory A, Noory C, McCullough B, Clarke S, Everett R, et al. In vitro dissolution of sparingly water-soluble drug dosage forms. Int J Pharm. 1995;125:99–106. https://doi.org/10.1016/0378-5173(95)00123-Z.

    Article  CAS  Google Scholar 

  54. Liu C, Desai KGH, Tang X, Chen X. Solubility of rofecoxib in the presence of aqueous solutions of glycerol, propylene glycol, ethanol, Span 20, Tween 80, and sodium lauryl sulfate at (298.15, 303.15, and 308.15) K. J Chem Eng Data. 2005;50:2061–4.https://doi.org/10.1021/je050276s.

  55. Phillips DJ, Pygall SR, Cooper VB, Mann JC. Overcoming sink limitations in dissolution testing: a review of traditional methods and the potential utility of biphasic systems. J Pharm Pharmacol. 2012;64:1549–59. https://doi.org/10.1111/j.2042-7158.2012.01523.x.

    Article  CAS  PubMed  Google Scholar 

  56. Gao Z. In vitro dissolution testing with flow-through method: a technical note. AAPS PharmSciTech. 2009;10:1401–5. https://doi.org/10.1208/s12249-009-9339-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shi Y, Gao P, Gong Y, Ping H. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption. Mol Pharm. 2010;7:1458–65. https://doi.org/10.1021/mp100114a.

    Article  CAS  PubMed  Google Scholar 

  58. Trasi NS, Taylor LS. Dissolution performance of binary amorphous drug combinations - impact of a second drug on the maximum achievable supersaturation. Int J Pharm. 2015;496:282–90. https://doi.org/10.1016/j.ijpharm.2015.10.026.

    Article  CAS  PubMed  Google Scholar 

  59. Cruañes MT, Bentz K, Xu W, Artino L. Technical note: non-sink dissolution media for identification of functional formulation excipients-the case of a precipitation inhibitor. Dissolution Technol. 2013;20:39–41. https://doi.org/10.14227/DT200413P39.

  60. Horkovics-Kovats S, Brunovský P, Pichler A, Bulitta JB. Population data analysis of dissolution time profiles: assessment of physicochemical properties of the drug, drug particles and the pharmaceutical formulation. Eur J Pharm Sci. 2015;78:245–54. https://doi.org/10.1016/j.ejps.2015.07.017.

    Article  CAS  PubMed  Google Scholar 

  61. Cima MJ, Lee H, Daniel K, Tanenbaum LM, Mantzavinou A, Spencer KC, et al. Single compartment drug delivery. J Control Release. 2014;190:157–71. https://doi.org/10.1016/j.jconrel.2014.04.049.

    Article  CAS  PubMed  Google Scholar 

  62. Khanday MA, Rafiq A, Nazir K. Mathematical models for drug diffusion through the compartments of blood and tissue medium. Alexandria J Med. 2017;53:245–9. https://doi.org/10.1016/j.ajme.2016.03.005.

    Article  Google Scholar 

  63. Himmelstein KJ, Lutz RJ. A review of the applications of physiologically based pharmacokinetic modeling. J Pharmacokinet Biopharm. 1979;7:127–45. https://doi.org/10.1007/BF01059734.

    Article  CAS  PubMed  Google Scholar 

  64. Sager JE, Yu J, Ragueneau-Majlessi I, Isoherranen N. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification. Drug Metab Dispos. 2015;43:1823–37. https://doi.org/10.1124/dmd.115.065920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Willmann S, Schmitt W, Keldenich J, Dressman JB. A physiologic model for simulating gastrointestinal flow and drug absorption in rats. Pharm Res. 2003;20:1766–71. https://doi.org/10.1023/B:PHAM.0000003373.72652.c0.

    Article  CAS  PubMed  Google Scholar 

  66. Lu E, Li S, Wang Z. Biorelevant test for supersaturable formulation. Asian J Pharm Sci. 2017;12:9–20. https://doi.org/10.1016/j.ajps.2016.10.002.

  67. Minekus M, Marteau P, Havenaar R, Huisin’t Veld J. A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. ATLA Altern to Lab Anim. 1995;23:197–209.

  68. Verwei M, Minekus M, Zeijdner E, Schilderink R, Havenaar R. Evaluation of two dynamic in vitro models simulating fasted and fed state conditions in the upper gastrointestinal tract (TIM-1 and tiny-TIM) for investigating the bioaccessibility of pharmaceutical compounds from oral dosage forms. Int J Pharm. 2016;498:178–86. https://doi.org/10.1016/j.ijpharm.2015.11.048.

    Article  CAS  PubMed  Google Scholar 

  69. Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, et al. The impact of food bioactives on health: in vitro and ex vivo models. Springer International Publishing; 2015. https://doi.org/10.1007/978-3-319-16104-4.

  70. Minekus M, Smeets-Peeters M, Havenaar R, Bernalier A, Fonty G, Marol-Bonnin S, et al. A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol. 1999;53:108–14. https://doi.org/10.1007/s002530051622.

    Article  CAS  PubMed  Google Scholar 

  71. Wickham M, Faulks R. Dynamic gastric model. Impact Food Bioact Heal Vitr Ex Vivo Model. 2012.

  72. Kong F, Singh RP. A human gastric simulator (HGS) to study food digestion in human stomach. J Food Sci. 2010;75:E627-35. https://doi.org/10.1111/j.1750-3841.2010.01856.x.

    Article  CAS  PubMed  Google Scholar 

  73. Ménard O, Cattenoz T, Guillemin H, Souchon I, Deglaire A, Dupont D, et al. Validation of a new in vitro dynamic system to simulate infant digestion. Food Chem. 2014;145:1039–45. https://doi.org/10.1016/j.foodchem.2013.09.036.

    Article  CAS  PubMed  Google Scholar 

  74. Molly K, Vande Woestyne M, Verstraete W. Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol. 1993;39:254–8. https://doi.org/10.1007/BF00228615.

    Article  CAS  PubMed  Google Scholar 

  75. Barroso E, Cueva C, Peláez C, Martínez-Cuesta MC, Requena T. Development of human colonic microbiota in the computer-controlled dynamic SIMulator of the GastroIntestinal tract SIMGI. LWT - Food Sci Technol. 2015;61:283–9. https://doi.org/10.1016/j.lwt.2014.12.014.

    Article  CAS  Google Scholar 

  76. Carino SR, Sperry DC, Hawley M. Relative bioavailability estimation of carbamazepine crystal forms using an artificial stomach-duodenum model. J Pharm Sci. 2006;95:116–25. https://doi.org/10.1002/jps.20495.

    Article  CAS  PubMed  Google Scholar 

  77. Liu W, Fu D, Zhang X, Chai J, Tian S, Han J. Development and validation of a new artificial gastric digestive system. Food Res Int. 2019;122:183–90. https://doi.org/10.1016/j.foodres.2019.04.015.

    Article  CAS  PubMed  Google Scholar 

  78. Fuller MF. In vitro digestion for pigs and poultry. C.A.B. International; 1991.

  79. Longland AC. Digestive enzyme activities in pigs and poultry. Wallingford, UK: CAB International; 1991.

    Google Scholar 

  80. Minekus M. The TNO gastro-intestinal model (TIM). Impact Food Bioact Heal Vitr Ex Vivo Model., Springer International Publishing; 2015, p. 37–46. https://doi.org/10.1007/978-3-319-16104-4_5.

  81. Dickinson PA, Rmaileh RA, Ashworth L, Barker RA, Burke WM, Patterson CM, et al. An investigation into the utility of a multi-compartmental, dynamic, system of the upper gastrointestinal tract to support formulation development and establish bioequivalence of poorly soluble drugs. AAPS J. 2012;14:196–205. https://doi.org/10.1208/s12248-012-9333-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fatma S, Talegaonkar S, Iqbal Z, Panda AK, Negi LM, Goswami DG, et al. Novel flavonoid-based biodegradable nanoparticles for effective oral delivery of etoposide by P-glycoprotein modulation: an in vitro, ex vivo and in vivo investigations. Drug Deliv. 2016;23:500–11. https://doi.org/10.3109/10717544.2014.923956.

    Article  CAS  PubMed  Google Scholar 

  83. Rizwanullah ZS, Rizwanullah M, Mir SR, Amin S. Bilosomes nanocarriers for improved oral bioavailability of acyclovir: a complete characterization through in vitro, ex-vivo and in vivo assessment. J Drug Deliv Sci Technol. 2020;57:101634. https://doi.org/10.1016/j.jddst.2020.101634.

    Article  CAS  Google Scholar 

  84. Tariq M, Alam MA, Singh AT, Iqbal Z, Panda AK, Talegaonkar S. Biodegradable polymeric nanoparticles for oral delivery of epirubicin: in vitro, ex vivo, and in vivo investigations. Colloids Surfaces B Biointerfaces. 2015;128:448–56. https://doi.org/10.1016/j.colsurfb.2015.02.043.

    Article  CAS  PubMed  Google Scholar 

  85. Saremi S, Atyabi F, Akhlaghi SP, Ostad SN, Dinarvand R. Thiolated chitosan nanoparticles for enhancing oral absorption of docetaxel: preparation, in vitro and ex vivo evaluation. Int J Nanomedicine. 2011;6:119–28. https://doi.org/10.2147/IJN.S15500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ruan LP, Chen S, Yu BY, Zhu DN, Cordell GA, Qiu SX. Prediction of human absorption of natural compounds by the non-everted rat intestinal sac model. Eur J Med Chem. 2006;41:605–10. https://doi.org/10.1016/j.ejmech.2006.01.013.

    Article  CAS  PubMed  Google Scholar 

  87. Allam AN, Hamdallah SI, Abdallah OY. Chitosan-coated diacerein nanosuspensions as a platform for enhancing bioavailability and lowering side effects: preparation, characterization, and ex vivo/in vivo evaluation. Int J Nanomedicine. 2017;12:4733–45. https://doi.org/10.2147/IJN.S139706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Freag MS, Elnaggar YSR, Abdallah OY. Development of novel polymer-stabilized diosmin nanosuspensions: in vitro appraisal and ex vivo permeation. Int J Pharm. 2013;454:462–71. https://doi.org/10.1016/j.ijpharm.2013.06.039.

    Article  CAS  PubMed  Google Scholar 

  89. Mahjub R, Radmehr M, Dorkoosh FA, Ostad SN, Rafiee-Tehrani M. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations. Drug Dev Ind Pharm. 2014;40:1645–59. https://doi.org/10.3109/03639045.2013.841187.

    Article  CAS  PubMed  Google Scholar 

  90. Sandri G, Bonferoni MC, Rossi S, Ferrari F, Boselli C, Caramella C. Insulin-loaded nanoparticles based on N-trimethyl chitosan: in vitro (caco-2 model) and ex vivo (excised rat jejunum, duodenum, and ileum) evaluation of penetration enhancement properties. AAPS PharmSciTech. 2010;11:362–71. https://doi.org/10.1208/s12249-010-9390-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nunes R, Silva C, Chaves L. Tissue-based in vitro and ex vivo models for intestinal permeability studies. Concepts Model. Drug Permeability Stud. Cell Tissue based Vitr Cult Model., Elsevier Inc.; 2016, p. 203–36. https://doi.org/10.1016/B978-0-08-100094-6.00013-4.

  92. Lea T. Caco-2 cell line. Impact Food Bioact. Heal. Vitr. Ex Vivo Model., Springer International Publishing; 2015, p. 103–11. https://doi.org/10.1007/978-3-319-16104-4_10.

  93. Beg S, Sharma G, Thanki K, Jain S, Katare OP, Singh B. Positively charged self-nanoemulsifying oily formulations of olmesartan medoxomil: systematic development, in vitro, ex vivo and in vivo evaluation. Int J Pharm. 2015;493:466–82. https://doi.org/10.1016/j.ijpharm.2015.07.048.

    Article  CAS  PubMed  Google Scholar 

  94. Dixit P, Jain DK, Dumbwani J. Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. J Pharmacol Toxicol Methods. 2012;65:13–7. https://doi.org/10.1016/j.vascn.2011.11.001.

  95. Genty M, González G, Clere C, Desangle-Gouty V, Legendre JY. Determination of the passive absorption through the rat intestine using chromatographic indices and molar volume. Eur J Pharm Sci. 2001;12:223–9. https://doi.org/10.1016/S0928-0987(00)00175-5.

    Article  CAS  PubMed  Google Scholar 

  96. Gamboa JM, Leong KW. In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv Drug Deliv Rev. 2013;65:800–10. https://doi.org/10.1016/j.addr.2013.01.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Alam MA, Al-Jenoobi FI, Al-Mohizea AM. Everted gut sac model as a tool in pharmaceutical research: limitations and applications. J Pharm Pharmacol. 2012;64:326–36. https://doi.org/10.1111/j.2042-7158.2011.01391.x.

    Article  CAS  PubMed  Google Scholar 

  98. Mainardes RM, Chaud MV, Gremião MPD, Evangelista RC. Development of praziquantel-loaded PLGA nanoparticles and evaluation of intestinal permeation by the everted gut sac model. J Nanosci Nanotechnol. 2006;6:3057–61. https://doi.org/10.1166/jnn.2006.487.

  99. Ling W, Xuehua J, Chenrui L, Jing R. Investigation of the improved effects of 2-hydroxypropyl-β-cyclodextrin on solubility, dissolution rate, and intestinal absorptive profile of tanshinone IIA in rats. Arch Pharm Res. 2007;30:1020–6. https://doi.org/10.1007/BF02993972.

    Article  Google Scholar 

  100. Huang J, Si L, Jiang L, Fan Z, Qiu J, Li G. Effect of pluronic F68 block copolymer on P-glycoprotein transport and CYP3A4 metabolism. Int J Pharm. 2008;356:351–3. https://doi.org/10.1016/j.ijpharm.2007.12.028.

    Article  CAS  PubMed  Google Scholar 

  101. Cornaire G, Woodley J, Saivin S, Legendre J-Y, Decourt S, Cloarec A, et al. Effect of polyoxyl 35 castor oil and polysorbate 80 on the intestinal absorption of digoxin in vitro. Arzneimittelforschung. 2011;50:576–9. https://doi.org/10.1055/s-0031-1300252.

    Article  Google Scholar 

  102. Boyd BJ, Bergström CAS, Vinarov Z, Kuentz M, Brouwers J, Augustijns P, et al. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci. 2019;137:104967. https://doi.org/10.1016/j.ejps.2019.104967.

    Article  CAS  PubMed  Google Scholar 

  103. Rozehnal V, Nakai D, Hoepner U, Fischer T, Kamiyama E, Takahashi M, et al. Human small intestinal and colonic tissue mounted in the Ussing chamber as a tool for characterizing the intestinal absorption of drugs. Eur J Pharm Sci. 2012;46:367–73. https://doi.org/10.1016/j.ejps.2012.02.025.

    Article  CAS  PubMed  Google Scholar 

  104. Sjöberg Å, Lutz M, Tannergren C, Wingolf C, Borde A, Ungell AL. Comprehensive study on regional human intestinal permeability and prediction of fraction absorbed of drugs using the Ussing chamber technique. Eur J Pharm Sci. 2013;48:166–80. https://doi.org/10.1016/j.ejps.2012.10.007.

    Article  CAS  PubMed  Google Scholar 

  105. Barbieri S, Buttini F, Rossi A, Bettini R, Colombo P, Ponchel G, et al. Ex vivo permeation of tamoxifen and its 4-OH metabolite through rat intestine from lecithin/chitosan nanoparticles. Int J Pharm. 2015;491:99–104. https://doi.org/10.1016/j.ijpharm.2015.06.021.

    Article  CAS  PubMed  Google Scholar 

  106. Yee S. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man - fact or myth. Pharm Res. 1997;14:763–6. https://doi.org/10.1023/A:1012102522787.

    Article  CAS  PubMed  Google Scholar 

  107. Sarmento B, Andrade F, Da Silva SB, Rodrigues F, Das Neves J, Ferreira D. Cell-based in vitro models for predicting drug permeability. Expert Opin Drug Metab Toxicol. 2012;8:607–21. https://doi.org/10.1517/17425255.2012.673586.

    Article  CAS  PubMed  Google Scholar 

  108. Lu Y, Kim S, Park K. In vitro-in vivo correlation: perspectives on model development. Int J Pharm. 2011;418:142–8. https://doi.org/10.1016/j.ijpharm.2011.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Margolskee A, Darwich AS, Galetin A, Rostami-Hodjegan A, Aarons L. Deconvolution and IVIVC: exploring the role of rate-limiting conditions. AAPS J. 2016;18:321–32. https://doi.org/10.1208/s12248-015-9849-y.

    Article  PubMed  Google Scholar 

  110. Gillespie WR. Convolution-based approaches for in vivo-in vitro correlation modeling. Adv Exp Med Biol. 1997;423:53–65. https://doi.org/10.1007/978-1-4684-6036-0_5.

    Article  CAS  PubMed  Google Scholar 

  111. O’Hara T, Hayes S, Davis J, Devane J, Smart T, Dunne A. In vivo-in vitro correlation (IVIVC) modeling incorporating a convolution step. J Pharmacokinet Pharmacodyn. 2001;28:277–98. https://doi.org/10.1023/A:1011531226478.

    Article  PubMed  Google Scholar 

  112. Cardot JM, Lukas JC, Muniz P. Time scaling for in vitro-in vivo correlation: the inverse release function (IRF) approach. AAPS J. 2018;20. https://doi.org/10.1208/s12248-018-0250-5.

  113. Cardot JM, Davit BM. In vitro-in vivo correlations: tricks and traps. AAPS J. 2012;14:491–9. https://doi.org/10.1208/s12248-012-9359-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Davanço MG, Campos DR, Carvalho P de O. In vitro – in vivo correlation in the development of oral drug formulation: a screenshot of the last two decades. Int J Pharm. 2020;580:119210. https://doi.org/10.1016/j.ijpharm.2020.119210.

  115. Stillhart C, Pepin X, Tistaert C, Good D, Van Den Bergh A, Parrott N, et al. PBPK Absorption modeling: establishing the in vitro–in vivo link—industry perspective. AAPS J. 2019;21:19. https://doi.org/10.1208/s12248-019-0292-3.

    Article  PubMed  Google Scholar 

  116. Fotaki N, Gray V, Kesisoglou F, Mayock S, Mirza T, Salt A, et al. Survey results for in vitro-in vivo correlations (IVIVC): critical variables for success. Dissolution Technol. 2013. https://doi.org/10.14227/DT200213P48.

  117. Cardot JM, Beyssac E, Alric M. In vitro–in vivo correlation: importance of dissolution in IVIVC. Dissolution Technol. 2007;14:15–9. https://doi.org/10.14227/DT140107P15.

  118. Grbic S, Parojcic J, Ibric S, Djuric Z. In vitro-in vivo correlation for gliclazide immediate-release tablets based on mechanistic absorption simulation. AAPS PharmSciTech. 2011;12:165–71. https://doi.org/10.1208/s12249-010-9573-y.

    Article  CAS  PubMed  Google Scholar 

  119. Mircioiu C, Anuta V, Mircioiu I, Nicolescu A, Fotaki N. In vitro–in vivo correlations based on in vitro dissolution of parent drug diltiazem and pharmacokinetics of its metabolite. Pharmaceutics. 2019;11. https://doi.org/10.3390/pharmaceutics11070344.

  120. Biswas N, Sahoo RK, Guha A, Kuotsu K. Chronotherapeutic delivery of hydroxypropylmethylcellulose based mini-tablets: an in vitro-in vivo correlation. Int J Biol Macromol. 2014;66:179–85. https://doi.org/10.1016/j.ijbiomac.2014.02.036.

    Article  CAS  PubMed  Google Scholar 

  121. Takka S, Sakr A, Goldberg A. Development and validation of an in vitro-in vivo correlation for buspirone hydrochloride extended release tablets. J Control Release. 2003;88:147–57. https://doi.org/10.1016/S0168-3659(02)00490-X.

    Article  CAS  PubMed  Google Scholar 

  122. Sirisuth N, Eddington ND. Influence of stereoselective pharmacokinetics in the development and predictability of an IVIVC for the enantiomers of metoprolol tartrate. Pharm Res. 2000;17:1019–25. https://doi.org/10.1023/A:1007595725360.

    Article  CAS  PubMed  Google Scholar 

  123. Dutta S, Qiu Y, Samara E, Cao G, Granneman GR. Once-a-day extended-release dosage form of divalproex sodium III: development and validation of a level A in vitro-in vivo correlation (IVIVC). J Pharm Sci. 2005;94:1949–56. https://doi.org/10.1002/jps.20387.

    Article  CAS  PubMed  Google Scholar 

  124. Naeem Aamir M, Ahmad M, Akhtar N, Murtaza G, Khan SA, Shahiq-Uz-Zaman, et al. Development and in vitro-in vivo relationship of controlled-release microparticles loaded with tramadol hydrochloride. Int J Pharm. 2011;407:38–43. https://doi.org/10.1016/j.ijpharm.2011.01.005.

  125. Mittapalli RK, Nuthalapati S, Delke DeBord AE, Xiong H. Development of a level A in vitro-in vivo correlation for veliparib (ABT-888) extended release tablet formulation. Pharm Res. 2017;34:1187–92. https://doi.org/10.1007/s11095-017-2133-3.

    Article  CAS  PubMed  Google Scholar 

  126. Kim TH, Shin S, Bulitta JB, Youn YS, Yoo SD, Shin BS. Development of a physiologically relevant population pharmacokinetic in vitro-in vivo correlation approach for designing extended-release oral dosage formulation. Mol Pharm. 2017;14:53–65. https://doi.org/10.1021/acs.molpharmaceut.6b00677.

    Article  CAS  PubMed  Google Scholar 

  127. Kesisoglou F, Rossenu S, Farrell C, Van Den Heuvel M, Prohn M, Fitzpatrick S, et al. Development of in vitro-in vivo correlation for extended-release niacin after administration of hypromellose-based matrix formulations to healthy volunteers. J Pharm Sci. 2014;103:3713–23. https://doi.org/10.1002/jps.24179.

    Article  CAS  PubMed  Google Scholar 

  128. Park JS, Shim JY, Park JS, Lee MJ, Kang JM, Lee SH, et al. Formulation variation and in vitro-in vivo correlation for a rapidly swellable three-layered tablet of tamsulosin HCl. Chem Pharm Bull. 2011;59:529–35. https://doi.org/10.1248/cpb.59.529.

    Article  CAS  Google Scholar 

  129. da Silva JD, de Sousa VP, Cabral LM, Davanço MG, Meulman J, de Oliveira Carvalho P, et al. In vitro–in vivo correlation for desvenlafaxine succinate monohydrate extended release tablets. AAPS PharmSciTech. 2020;21:1–9. https://doi.org/10.1208/s12249-020-01740-x.

    Article  CAS  Google Scholar 

  130. Ochoa L, Igartua M, Hernández RM, Solinís MÁ, Gascón AR, Pedraz JL. In vivo evaluation of two new sustained release formulations elaborated by one-step melt granulation: level A in vitro-in vivo correlation. Eur J Pharm Biopharm. 2010;75:232–7. https://doi.org/10.1016/j.ejpb.2010.02.008.

    Article  CAS  PubMed  Google Scholar 

  131. Souliman S, Beyssac E, Cardot JM, Denis S, Alric M. Investigation of the biopharmaceutical behavior of theophylline hydrophilic matrix tablets using usp methods and an artificial digestive system. Drug Dev Ind Pharm. 2007;33:475–83. https://doi.org/10.1080/03639040601128654.

    Article  CAS  PubMed  Google Scholar 

  132. Mohamed MEF, Trueman S, Othman AA, Han JH, Ju TR, Marroum P. Development of in vitro–in vivo correlation for upadacitinib extended-release tablet formulation. AAPS J. 2019;21. https://doi.org/10.1208/s12248-019-0378-y.

  133. Liu Y, Schwartz JB, Schnaare RL, Sugita ET. A multi-mechanistic drug release approach in a bead dosage form and in vitro/in vivo correlations. Pharm Dev Technol. 2003;8:409–17. https://doi.org/10.1081/PDT-120024694.

    Article  CAS  PubMed  Google Scholar 

  134. Kortejärvi H, Mikkola J, Bäckman M, Antila S, Marvola M. Development of level A, B and C in vitro - in vivo correlations for modified-release levosimendan capsules. Int J Pharm. 2002;241:87–95. https://doi.org/10.1016/S0378-5173(02)00137-0.

    Article  PubMed  Google Scholar 

  135. Mahayni H, Rekhi GS, Uppoor RS, Marroum P, Hussain AS, Augsburger LL, et al. Evaluation of “external” predictability of an in vitro–in vivo correlation for an extended-release formulation containing metoprolol tartrate. J Pharm Sci. 2000;89:1354–61. https://doi.org/10.1002/1520-6017(200010)89:10%3c1354::AID-JPS13%3e3.0.CO;2-P.

    Article  CAS  PubMed  Google Scholar 

  136. Soto E, Haertter S, Koenen-Bergmann M, Staab A, Trocóniz IF. Population in vitro-in vivo correlation model for pramipexole slow-release oral formulations. Pharm Res. 2010;27:340–9. https://doi.org/10.1007/s11095-009-0027-8.

    Article  CAS  PubMed  Google Scholar 

  137. Sirisuth N, Eddington ND. The influence of first pass metabolism on the development and validation of an IVIVC for metoprolol extended release tablets. Eur J Pharm Biopharm. 2002;53:301–9. https://doi.org/10.1016/S0939-6411(01)00248-X.

    Article  CAS  PubMed  Google Scholar 

  138. Takeuchi S, Tsume Y, Amidon GE, Amidon GL. Evaluation of a three compartment in vitro gastrointestinal simulator dissolution apparatus to predict in Vivo dissolution. J Pharm Sci. 2014;103:3416–22. https://doi.org/10.1002/jps.24112.

    Article  CAS  PubMed  Google Scholar 

  139. Taha NF, Emam MF, Emara LH. A novel combination of Soluplus®/Poloxamer for Meloxicam solid dispersions via hot melt extrusion for rapid onset of action. Part 2: comparative bioavailability and IVIVC. Drug Dev Ind Pharm. 2020:1–11. https://doi.org/10.1080/03639045.2020.1791164.

  140. Figueroa-Campos A, Sánchez-Dengra B, Merino V, Dahan A, González-Álvarez I, García-Arieta A, et al. Candesartan cilexetil in vitro–in vivo correlation: predictive dissolution as a development tool. Pharmaceutics. 2020;12:633. https://doi.org/10.3390/pharmaceutics12070633.

    Article  CAS  PubMed Central  Google Scholar 

  141. González-García I, Mangas-Sanjuan V, Merino-Sanjuán M, Álvarez-Álvarez C, Díaz-Garzón Marco J, Rodrí-Guez-Bonnín MA, et al. IVIVC approach based on carbamazepine bioequivalence studies combination. Pharmazie. 2017;72:449–55. https://doi.org/10.1691/ph.2017.7011.

    Article  CAS  PubMed  Google Scholar 

  142. Posti J, Katila K, Kostiainen T. Dissolution rate limited bioavailability of flutamide, and in vitro - in vivo correlation. Eur J Pharm Biopharm. 2000;49:35–9. https://doi.org/10.1016/S0939-6411(99)00061-2.

    Article  CAS  PubMed  Google Scholar 

  143. Sankalia JM, Sankalia MG, Mashru RC. Drug release and swelling kinetics of directly compressed glipizide sustained-release matrices: establishment of level A IVIVC. J Control Release. 2008;129:49–58. https://doi.org/10.1016/j.jconrel.2008.03.016.

    Article  CAS  PubMed  Google Scholar 

  144. Ghosh A, Bhaumik UK, Bose A, Mandal U, Gowda V, Chatterjee B, et al. Extended release dosage form of glipizide: development and validation of a level A in vitro–in vivo correlation. Biol Pharm Bull. 2008;31:1946–51. https://doi.org/10.1248/bpb.31.1946.

    Article  CAS  PubMed  Google Scholar 

  145. Defang O, Shufang N, Wei L, Hong G, Hui L, Weisan P. In vitro and in vivo evaluation of two extended release preparations of combination metformin and glipizide. Drug Dev Ind Pharm. 2005;31:677–85. https://doi.org/10.1080/03639040500216410.

    Article  CAS  PubMed  Google Scholar 

  146. Shah HJ, Subbaiah G, Patel DM, Patel CN. In vitro - in vivo correlation of modified release dosage form of lamotrigine. Biopharm Drug Dispos. 2009;30:524–31. https://doi.org/10.1002/bdd.688.

    Article  CAS  PubMed  Google Scholar 

  147. Corrigan OI, Devlin Y, Butler J. Influence of dissolution medium buffer composition on ketoprofen release from ER products and in vitro-in vivo correlation. Int J Pharm. 2003;254:147–54. https://doi.org/10.1016/S0378-5173(03)00004-8.

    Article  CAS  PubMed  Google Scholar 

  148. Mandal U, Ray KK, Gowda V, Ghosh A, Pal TK. In-vitro and in-vivo correlation for two gliclazide extended-release tablets. J Pharm Pharmacol. 2007;59:971–6. https://doi.org/10.1211/jpp.59.7.0009.

    Article  CAS  PubMed  Google Scholar 

  149. Balan G, Timmins P, Greene DS, Marathe PH. In-vitro in-vivo correlation models for glibenclamide after administration of metformin/glibenclamide tablets to healthy human volunteers. J Pharm Pharmacol. 2000;52:831–8. https://doi.org/10.1211/0022357001774688.

    Article  CAS  PubMed  Google Scholar 

  150. Xu H, Shi Y, Vela S, Marroum P, Gao P. Developing quantitative in vitro–in vivo correlation for fenofibrate immediate-release formulations with the biphasic dissolution-partition test method. J Pharm Sci. 2018;107:476–87. https://doi.org/10.1016/j.xphs.2017.06.018.

    Article  CAS  PubMed  Google Scholar 

  151. Vuletić L, Khan MZI, Špoljarić D, Radić M, Cetina-Čižmek B, Filipović-Grčić J. Development of a clinically relevant dissolution method for metaxalone immediate release formulations based on an IVIVC model. Pharm Res. 2018;35. https://doi.org/10.1007/s11095-018-2434-1.

  152. De Castro Bezerra K, Pinto EC, Cabral LM, De Sousa VP. Development of a dissolution method for gliclazide modified-release tablets using usp apparatus 3 with in vitro–in vivo correlation. Chem Pharm Bull. 2018;66:701–7. https://doi.org/10.1248/cpb.c17-00933.

    Article  Google Scholar 

  153. De Lima LG, De Campos DR. Development of a level A in vitro-in vivo correlation for extended release dosage forms of quetiapine fumarate. Drug Res (Stuttg). 2016;66:225–9. https://doi.org/10.1055/s-0035-1569327.

    Article  CAS  Google Scholar 

  154. Alkhalidi BA, Al-Ghazawi M, Alkhatib HS, Sallam A. Development of a predictive in vitro dissolution for clarithromycin granular suspension based on in vitro-in vivo correlations. Pharm Dev Technol. 2010;15:286–95. https://doi.org/10.3109/10837450903188493.

    Article  CAS  PubMed  Google Scholar 

  155. Kesisoglou F, Hermans A, Neu C, Yee KL, Palcza J, Miller J. Development of in vitro-in vivo correlation for amorphous solid dispersion immediate-release suvorexant tablets and application to clinically relevant dissolution specifications and in-process controls. J Pharm Sci. 2015;104:2913–22. https://doi.org/10.1002/jps.24362.

    Article  CAS  PubMed  Google Scholar 

  156. Ruiz Picazo A, Martinez-Martinez MT, Colón-Useche S, Iriarte R, Sánchez-Dengra B, González-Álvarez M, et al. In vitro dissolution as a tool for formulation selection: telmisartan two-step IVIVC. Mol Pharm. 2018;15:2307–15. https://doi.org/10.1021/acs.molpharmaceut.8b00153.

    Article  CAS  PubMed  Google Scholar 

  157. Buch P, Holm P, Thomassen JQ, Scherer D, Branscheid R, Kolb U, et al. IVIVC for fenofibrate immediate release tablets using solubility and permeability as in vitro predictors for pharmacokinetics. J Pharm Sci. 2010;99:4427–36. https://doi.org/10.1002/jps.22148.

    Article  CAS  PubMed  Google Scholar 

  158. Al-Gousous J, Langguth P. A time-scaled convolution approach to construct IVIVC for enteric-coated acetylsalicylic acid tablets. Pharmazie. 2018;73:67–9. https://doi.org/10.1691/ph.2018.7136.

    Article  CAS  PubMed  Google Scholar 

  159. Bose A, Wui WT. Convolution and validation of in vitro-in vivo correlation of water-insoluble sustained-release drug (domperidone) by first-order pharmacokinetic one-compartmental model fitting equation. Eur J Drug Metab Pharmacokinet. 2013;38:191–200. https://doi.org/10.1007/s13318-012-0116-7.

    Article  CAS  PubMed  Google Scholar 

  160. Kim TH, Shin S, Jeong S, Lee JB, Shin BS. Physiologically relevant in vitro-in vivo correlation (IVIVC) approach for sildenafil with site-dependent dissolution. Pharmaceutics. 2019;11. https://doi.org/10.3390/pharmaceutics11060251.

  161. Yaro P, He X, Liu W, Xun M, Ma Y, Li Z, et al. In vitro-in vivo correlations for three different commercial immediate-release indapamide tablets. Drug Dev Ind Pharm. 2014;40:1670–6. https://doi.org/10.3109/03639045.2013.842577.

    Article  CAS  PubMed  Google Scholar 

  162. Matsui K, Tsume Y, Takeuchi S, Searls A, Amidon GL. Utilization of gastrointestinal simulator, an in vivo predictive dissolution methodology, coupled with computational approach to forecast oral absorption of dipyridamole. Mol Pharm. 2017;14:1181–9. https://doi.org/10.1021/acs.molpharmaceut.6b01063.

    Article  CAS  PubMed  Google Scholar 

  163. Ertan G, Karasulu HY, Karasulu E, Ege MA, Köse T, Güneri T. A new in vitro/in vivo kinetic correlation method for nitrofurantoin matrix tablet formulations. Drug Dev Ind Pharm. 2000;26:737–43. https://doi.org/10.1081/DDC-100101292.

    Article  CAS  PubMed  Google Scholar 

  164. Veng-Pedersen P, Gobburu JVS, Meyer MC, Straughn AB. Carbamazepine level-A in vivo-in vitro correlation (IVIVC): a scaled convolution based predictive approach. Biopharm Drug Dispos. 2000;21:1–6. https://doi.org/10.1002/1099-081X(200001)21:1%3c1::AID-BDD207%3e3.0.CO;2-D.

    Article  CAS  PubMed  Google Scholar 

  165. Macha S, Yong C-L, Darrington T, Davis MS, MacGregor TR, Castles M, et al. In vitro - in vivo correlation for nevirapine extended release tablets. Biopharm Drug Dispos. 2009;30:542–50. https://doi.org/10.1002/bdd.691.

    Article  CAS  PubMed  Google Scholar 

  166. Emara LH, El-Menshawi BS, Estefan MY. In vitro-in vivo correlation and comparative bioavailability of vincamine in prolonged-release preparations. Drug Dev Ind Pharm. 2000;26:243–51. https://doi.org/10.1081/DDC-100100352.

    Article  CAS  PubMed  Google Scholar 

  167. Ranjan A, Jha PK. Experiments and modeling of controlled release behavior of commercial and model polymer-drug formulations using dialysis membrane method. Drug Deliv Transl Res. 2020;10:515–28. https://doi.org/10.1007/s13346-019-00696-1.

    Article  CAS  PubMed  Google Scholar 

  168. Hens B, Bermejo M, Tsume Y, Gonzalez-Alvarez I, Ruan H, Matsui K, et al. Evaluation and optimized selection of supersaturating drug delivery systems of posaconazole (BCS class 2b) in the gastrointestinal simulator (GIS): an in vitro-in silico-in vivo approach. Eur J Pharm Sci. 2018;115:258–69. https://doi.org/10.1016/j.ejps.2018.01.039.

    Article  CAS  PubMed  Google Scholar 

  169. De Carvalho Mendes T, Simon A, Menezes JCV, Pinto EC, Cabral LM, De Sousa VP. Development of USP apparatus 3 dissolution method with IVIVC for extended release tablets of metformin hydrochloride and development of a generic formulation. Chem Pharm Bull. 2019;67:23–31. https://doi.org/10.1248/cpb.c18-00579.

    Article  Google Scholar 

  170. Rostami-Hodjegan A, Shiran MR, Tucker GT, Conway BR, Irwin WJ, Shaw LR, et al. A new rapidly absorbed paracetamol tablet containing sodium bicarbonate. II. Dissolution studies and in vitro/in vivo correlation. Drug Dev Ind Pharm. 2002;28:533–43. https://doi.org/10.1081/DDC-120003449.

  171. Kesisoglou F, Xia B, Agrawal NGB. Comparison of deconvolution-based and absorption modeling IVIVC for extended release formulations of a BCS III drug development candidate. AAPS J. 2015;17:1492–500. https://doi.org/10.1208/s12248-015-9816-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kushner J, Lamba M, Stock T, Wang R, Nemeth MA, Alvey C, et al. Development and validation of a level A in-vitro in-vivo correlation for tofacitinib modified-release tablets using extrudable core system osmotic delivery technology. Eur J Pharm Sci. 2020;147:105200. https://doi.org/10.1016/j.ejps.2019.105200.

    Article  CAS  PubMed  Google Scholar 

  173. Shin S, Kim TH, Lee DY, Chung SE, Lee JB, Kim DH, et al. Development of a population pharmacokinetics-based in vitro-in vivo correlation model for drugs with site-dependent absorption: the acyclovir case study. AAPS J. 2020;22. https://doi.org/10.1208/s12248-019-0382-2.

  174. Mittapalli RK, Marroum P, Qiu Y, Apfelbaum K, Xiong H. Development of in vitro-in vivo correlation for potassium chloride extended release tablet formulation using urinary pharmacokinetic data. Pharm Res. 2017;34:1527–33. https://doi.org/10.1007/s11095-017-2179-2.

    Article  CAS  PubMed  Google Scholar 

  175. Kim TH, Bulitta JB, Kim DH, Shin S, Shin BS. Novel extended in vitro-in vivo correlation model for the development of extended-release formulations for baclofen: from formulation composition to in vivo pharmacokinetics. Int J Pharm. 2019;556:276–86. https://doi.org/10.1016/j.ijpharm.2018.12.007.

    Article  CAS  PubMed  Google Scholar 

  176. Souliman S, Blanquet S, Beyssac E, Cardot JM. A level a in vitro/in vivo correlation in fasted and fed states using different methods: applied to solid immediate release oral dosage form. Eur J Pharm Sci. 2006;27:72–9. https://doi.org/10.1016/j.ejps.2005.08.006.

    Article  CAS  PubMed  Google Scholar 

  177. Balan G, Timmins P, Greene DS, Marathe PH. In vitro–in vivo correlation (IVIVC) models for metformin after administration of modified-release (MR) oral dosage forms to healthy human volunteers. J Pharm Sci. 2001;90:1176–85. https://doi.org/10.1002/jps.1071.

    Article  CAS  PubMed  Google Scholar 

  178. Hu LD, Liu Y, Tang X, Zhang Q. Preparation and in vitro/in vivo evaluation of sustained-release metformin hydrochloride pellets. Eur J Pharm Biopharm. 2006;64:185–92. https://doi.org/10.1016/j.ejpb.2006.04.004.

    Article  CAS  PubMed  Google Scholar 

  179. Dalton JT, Straughn AB, Dickason DA, Grandolfi GP. Predictive ability of level a in vitro-in vivo correlation for RingCap controlled-release acetaminophen tablets. Pharm Res. 2001;18:1729–34. https://doi.org/10.1023/A:1013326714345.

    Article  CAS  PubMed  Google Scholar 

  180. Vardakou M, Mercuri A, Naylor TA, Rizzo D, Butler JM, Connolly PC, et al. Predicting the human in vivo performance of different oral capsule shell types using a novel in vitro dynamic gastric model. Int J Pharm. 2011;419:192–9. https://doi.org/10.1016/j.ijpharm.2011.07.046.

    Article  CAS  PubMed  Google Scholar 

  181. Lue BM, Nielsen FS, Magnussen T, Schou HM, Kristensen K, Jacobsen LO, et al. Using biorelevant dissolution to obtain IVIVC of solid dosage forms containing a poorly-soluble model compound. Eur J Pharm Biopharm. 2008;69:648–57. https://doi.org/10.1016/j.ejpb.2007.12.013.

    Article  CAS  PubMed  Google Scholar 

  182. Xu H, Krakow S, Shi Y, Rosenberg J, Gao P. In vitro characterization of ritonavir formulations and correlation to in vivo performance in dogs. Eur J Pharm Sci. 2018;115:286–95. https://doi.org/10.1016/j.ejps.2018.01.026.

    Article  CAS  PubMed  Google Scholar 

  183. Lee DS, Kang DW, Choi GW, Choi HG, Cho HY. Development of level a in vitro–vivo correlation for electrosprayed microspheres containing leuprolide: physicochemical, pharmacokinetic, and pharmacodynamic evaluation. Pharmaceutics. 2020;12:36. https://doi.org/10.3390/pharmaceutics12010036.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by a research grant from the Science and Engineering Research Board (SERB), India (no. YSS/2015/001228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prateek K. Jha.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Disclaimer

The authors alone are responsible for the content and writing of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, A., Jha, P.K. Recent Advances in Dissolution Testing and Their Use to Improve In Vitro–In Vivo Correlations in Oral Drug Formulations. J Pharm Innov 17, 1011–1026 (2022). https://doi.org/10.1007/s12247-021-09565-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-021-09565-2

Keywords

Navigation