Skip to main content
Log in

Surface Tension and Self-association Properties of Aqueous Polysorbate 20 HP and 80 HP Solutions: Insights into Protein Stabilisation Mechanisms

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Objective

Polysorbates 20 and 80 are the most used surfactants for the development of parenteral protein formulations, because of their beneficial safety and stabilisation profile. Although, showing excellent stabilisation properties, the stabilisation mechanism(s) of these surfactants for aqueous protein formulations are still unclear. Different stabilisation models have been discussed in the literature, among them the possible formation of protein-surfactant micelle complexes.

Methods

This study focusses on the determination of the self-association properties of compendial grade polysorbate 20 HP (PS 20 HP) and polysorbate 80 HP (PS 80 HP) with regard to the formed micelle size (by dynamic light scattering, DLS), the concentration upon which the surfactant molecules self-associate (cmr, critical micelle concentration range) to form micelles, and the related surface tension. Surface tension and micelle size were determined as a function of temperature, as well as composition of the formulation (presence of a buffer salt and influence of ionic strength).

Results

The critical micelle concentration range values (cmr) at 25 °C are between 15–75 μM for PS 20 HP, but considerably lower for PS 80 HP with 7–16 μM, depending only slightly on the formulation composition. With increasing temperature, the cmr decreases slightly. PS 80 HP forms larger micelles (Rh = 4.5 nm) compared with PS 20 HP (Rh = 3.5 nm) (25 °C). The temperature dependency of the micelle size is more pronounced for PS 80 HP.

Conclusions

Based on these results, the suggested stabilisation mechanism, especially for antibody formulations, by the formation of antibody-polysorbate micelle complexes, is critically discussed, and the current study shows that this stabilisation mechanism is not likely, for commonly used monoclonal antibody formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dwivedi M, Blech M, Presser I, Garidel P. Polysorbate degradation in biotherapeutic formulations: identification and discussion of current root causes. Int J Pharm. 2018;552:422–36.

    CAS  PubMed  Google Scholar 

  2. Ravuri KSK. Polysorbate degradation and quality. AAPS Adv Pharmaceut Sci Ser. 2018;38:25–62.

    CAS  Google Scholar 

  3. Bahetia A, Kumarb L, Bansalb AK. Excipients used in lyophilization of small molecules. J Excipients Food Chem. 2010;1(1):41–54.

    Google Scholar 

  4. Moreton RC. Excipients to the year 2025 – and beyond! J Excipients Food Chem. 2019;10(2):29–40.

    Google Scholar 

  5. Gervasi V, Dall Agnol R, Cullen S, McCoy T, Vucen S, Crean A. Parenteral protein formulations: an overview of approved products within the European Union. Eur J Pharm Biopharm. 2018;131:8–24.

    CAS  PubMed  Google Scholar 

  6. Huang Z, Wu M, Ma C, Bai X, Thang X, Zhao Z, et al. Spectroscopic quantification of surfactants in solid lipid nanoparticles. J Pharm Innov. 2020;15:155–62.

    Google Scholar 

  7. Carpenter JF, Manning MC, editors. Rational design of stable protein formulations. Theory and practice. LLC, New York: Springer Science - Business Media; 2002.

    Google Scholar 

  8. Garidel P, Blume A, Wagner M. Prediction of colloidal stability of high concentration protein formulations. Pharm Dev Technol. 2015;20:367–74.

    CAS  PubMed  Google Scholar 

  9. Garidel P, Kuhn AB, Schäfer LV, Karow-Zwick AR, Blech M. High-concentration protein formulations: how high is high? Eur J Pharm Biopharm  2017;119:353–60.

  10. Khan TA, Mahler HC, Kishore RSK. Key interactions of surfactants in therapeutic protein formulations: a review. Eur J Pharm Biopharm. 2015;97:60–7.

    CAS  PubMed  Google Scholar 

  11. Maggio ET. Use of excipients to control aggregation in peptide and protein formulations. J Excipients Food Chem. 2010;1(2):40–9.

    CAS  Google Scholar 

  12. Sahin E, Deshmukh S. Challenges and considerations in development and manufacturing of high concentration biologics drug products. J Pharm Innov. 2020;15:255–67.

    Google Scholar 

  13. Wang W, Wang J, Wang DQ. Dual effects of tween 80 on protein stability. Int J Pharm. 2008;347:31–8.

  14. Den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, et al. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharm Res. 2011;28:920–33.

    Google Scholar 

  15. Garidel P, Kebbel F. Protein therapeutics and aggregates characterized by photon correlation spectroscopy. BioProcess Int. 2010;8:38–46.

    CAS  Google Scholar 

  16. Final report on the safety assessment of polysorbates 20, 21, 40, 60, 61, 65, 80, 81, and 85. J Am Coll Toxicol. 1984;3(5):1–82. https://doi.org/10.3109/10915818409021272.

    Article  Google Scholar 

  17. Falconer RJ. Advances in liquid formulations of parenteral therapeutic proteins. Biotechnol Adv. 2019;37:107412.

    CAS  PubMed  Google Scholar 

  18. Maggio ET. Polysorbates, peroxides, protein aggregation, and immunogenicity – a growing concern. J Excipients Food Chem. 2012;3(2):45–53.

    CAS  Google Scholar 

  19. Maggio ET. Reducing or eliminating polysorbate induced anaphylaxis and unwanted immunogenicity in biotherapeutics. J Excipients Food Chem. 2017;8(2):52–61.

    Google Scholar 

  20. Schwartzberg LS, Navari RM. Safety of polysorbate 80 in the oncology setting. Adv Ther. 2018;35:754–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Singh SK, Mahler HC, Hartman C, Stark CA. Are injection site reactions in monoclonal antibody therapies caused by polysorbate excipient degradants? J Pharm Sci. 2018;107:2735–41.

    CAS  PubMed  Google Scholar 

  22. Tomlinson A, Demeule B, Lin B, Yadav S. Polysorbate 20 degradation in biopharmaceutical formulations: quantification of free fatty acids, characterization of particulates, and insights into the degradation mechanism. Mol Pharm. 2015;2015(12):3805–15.

    Google Scholar 

  23. Dixit N, Salamat-Miller N, Salinas PA, Taylor KD, Basu SK. Residual host cell protein promotes polysorbate 20 degradation in a sulfatase drug product leading to free fatty acid particles. J Pharm Sci. 2016;105:1657–66.

    CAS  PubMed  Google Scholar 

  24. Dwivedi M, Buske J, Haemmerling F, Blech M, Garidel P. Acidic and alkaline hydrolysis of polysorbates under aqueous conditions: towards understanding polysorbate degradation in biopharmaceutical formulations. Eur J Pharm Sci. 2020;144:105211.

    PubMed  Google Scholar 

  25. Zhang L, Yadav S, Demeule B, Wang J, Mozziconacci O, Schӧneich C. Degradation mechanisms of polysorbate 20 differentiated by 18O-labeling and mass spectrometry. Pharm Res. 2017;34:84–100.

    CAS  PubMed  Google Scholar 

  26. Cheng Y, Hu M, Zamiri C, Carcelen T, Demeule B, Tomlinson A, et al. A rapid high-sensitivity reversed phase ultra high performance liquid chromatography mass spectrometry method for assessing polysorbate 20 degradation in protein therapeutics. J Pharm Sci. 2019;108:2880–6.

    CAS  PubMed  Google Scholar 

  27. Dahotre S, Tomlinson A, Lin B, Yadav S. Novel markers to track oxidative polysorbate degradation in pharmaceutical formulations. J Pharm Biomed Anal. 2018;157:201–7.

    CAS  PubMed  Google Scholar 

  28. Evers DH, Schultz-Fademrecht T, Garidel P, Buske J. Development and validation of a selective marker-based quantification of polysorbate 20 in biopharmaceutical formulations using UHPLC QDa detection. J Chromatography B. 2020:122287. https://doi.org/10.1016/j.jchromb.2020.122287.

  29. Lee HJ, McAuley A, Schilke KF, McGuire J. Molecular origins of surfactant-mediated stabilization of protein drugs. Adv Drug Deliv Rev. 2011;63:1160–71.

    CAS  PubMed  Google Scholar 

  30. Koepf E, Eisele S, Schroeder R, Brezesinski G, Friess W. Notorious but not understood: how liquid-air interfacial stress triggers protein aggregation. Int J Pharm. 2018a;637:202–12.

    Google Scholar 

  31. Koepf E, Schroeder R, Brezesinski G, Friess W. The film tells the story: physical-chemical characteristics of IgG at the liquid-air interface. Eur J Pharm Biopharm. 2018b;119:396–407.

    Google Scholar 

  32. Tanford C (1980) The hydrophobic effect. Formation of micelles and biological membranes. Wiley; Brisbane, Chichester, New York, Toronto.

  33. Garidel P, Hoffmann C, Blume A. A thermodynamic analysis of the binding interaction between polysorbate 20 and 80 with human serum albumins and immunoglobulins: a contribution to understand colloidal protein stabilization. Biophys Chem. 2009;143:70–8.

    CAS  PubMed  Google Scholar 

  34. Hoffmann C, Blume A, Miller I, Garidel P. Insights into protein-polysorbate interactions analysed by means of isothermal titration and differential scanning calorimetry. Eur Biophys J. 2009;38:557–68.

    CAS  PubMed  Google Scholar 

  35. McAuley WJ, Jones DS, Kett VL. Characterisation of the interaction of lactate dehydrogenase with Tween-20 using isothermal titration calorimetry, interfacial rheometry and surface tension measurements. J Pharm Sci. 2009;98:2659–69.

    CAS  PubMed  Google Scholar 

  36. Kerth A, Garidel P, Howe J, Alexander C, Mach JP, Waelli T, et al. An infrared reflection-absorption spectroscopic (IRRAS) study of the interaction of lipid A and lipopolysaccharide re with endotoxin-binding proteins. Med Chem. 2009;5:535–42.

    CAS  PubMed  Google Scholar 

  37. Kudryashova EV, Meinders MBJ, Visser AJWG, van Hoek A, de Jongh HJ. Structure and dynamics of egg white ovalbumin adsorbed at the air/water interface. Eur Biophys J. 2003;32(6):553–62.

    CAS  PubMed  Google Scholar 

  38. Martin AH, Meinders MBJ, Bos MA, Cohen Stuart MA, Van Vliet T. Conformational aspects of proteins at the air/water interface studied by infrared reflection-absorption spectroscopy. Langmuir. 2003;19:2922–8.

    CAS  Google Scholar 

  39. Mitropoulos V, Mütze A, Fischer P. Mechanical properties of protein adsorption layers at the air/water and oil/water interface: a comparison in light of the thermodynamical stability of proteins. Adv Colloid Interf Sci. 2014;206:195–206.

    CAS  Google Scholar 

  40. Rabe M, Kerth A, Blume A, Garidel P. Albumin displacement on the air/water interface by tween (polysorbate) surfactants. Eur Biophysics J. 2020 (in press).

  41. Bodratti AM, Alexandridis P. Formulation of poloxamers for drug delivery. J Funct Biomater. 2018;2018(9):11. https://doi.org/10.3390/jfb9010011.

    Article  CAS  Google Scholar 

  42. Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano Res. 2018;11(10):4985–98.

    PubMed  PubMed Central  Google Scholar 

  43. Waters LJ, Smith OEP, Small W, Mellor S. Understanding polysorbate-compound interactions within the CMC region. J Chromatogr A. 2020;1623(2020):461212.

    CAS  PubMed  Google Scholar 

  44. Hait S, Moulik SP. Determination of critical micelle concentration (CMC) of nonionic surfactants by donor-acceptor interaction with iodine and correlation of CMC with hydrophile-lipophile balance and other parameters of the surfactants. J Surfactant Deterg. 2001;4:303–9.

    CAS  Google Scholar 

  45. Horiuchi S, Winter G. CMC determination of nonionic surfactants in protein formulations using ultrasonic resonance technology. Eur J Pharm Biopharm. 2015;92:8–14.

    CAS  PubMed  Google Scholar 

  46. Mittal KL. Determination of CMC of polysorbate 20 in aqueous solution by surface tension method. J Pharm Sci. 1970;61(8):1334–5.

    Google Scholar 

  47. Nayem J, Zhang Z, Tomlinson A, Zarraga IE, Wagner NJ, Liu Y. Micellar morphology of polysorbate 20 and 80 and their ester fractions in solution via small-angle neutron scattering. J Pharm Sci. 2020;109:01498–508.

    CAS  Google Scholar 

  48. Ortiz-Tafoya MC, Tecante A. Physicochemical characterization of sodium stearoyllactylate (SSL), polyoxyethylenesorbitan monolaurate (Tween 20) and κ-carrageenan. Data Brief. 2018;19:642–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Szymczyk K, Zdziennicka A, Jańczuk B. Adsorption and aggregation properties of some polysorbates at different temperatures. J Solut Chem. 2018;47:1824–40.

    CAS  Google Scholar 

  50. Wan LSC, Lee PFS. CMC of polysorbates. J Pharm Sci. 1974;61(8):136–7.

    Google Scholar 

  51. Braun AC, Ilko D, Merget B, Gieseler H, Germershaus O, Holzgrabe U, et al. Predicting critical micelle concentration and micelle molecular weight of polysorbate 80 using compendial methods. Eur J Pharm Biopharm. 2015;94:559–68.

    CAS  PubMed  Google Scholar 

  52. Brezesinski G, Mögel HJ. Grenzflächen und Kolloide. Spektrum Akademischer Verlag, Heidelberg: Physikalisch-chemisch Grundlagen; 1993.

    Google Scholar 

  53. Dörfler HD. Grenzflächen- und Kolloidchemie. VCH-Verlag: Weinheim; 1994.

    Google Scholar 

  54. Schwuger MJ. Lehrbuch der Grenzflächenchemie. Stuttgart: Thieme Verlag; 1996.

    Google Scholar 

  55. Lauth J, Kowalczyl J. Einführung in die Physik und Chemie der Grenzflächen und Kolloide. Heidelberg: Springer Spektrum; 2016.

    Google Scholar 

  56. DIN EN 14370: 2004–11 Grenzflächenaktive Stoffe - Bestimmung der Oberflächenspannung.

  57. DIN 53914: 1997–07 Prüfung von Tensiden - Bestimmung der Oberflächenspannung.

  58. Hoffmann C. Protein-Detergenz-Wechselwirkungen. Germany: Masterarbeit Martin-Luther-Universität Halle/Saale; 2007.

    Google Scholar 

  59. Den Engelsman J, Kebbel F, Garidel P. Laser light scattering-based techniques used for the characterisation of protein therapeutics. In: Mahler HC, Jiskoot W, editors. Analysis of aggregates and particles in protein pharmaceuticals, John Wiley & Sons, Inc, Chapter, vol. 3. 1st ed; 2012. p. 37–60.

  60. Karow AR, Götzl J, Garidel P. Resolving power of dynamic light scattering for protein and polystyrene nanoparticles. Pharm Dev Technol. 2015;20(1):84–9.

    CAS  PubMed  Google Scholar 

  61. Pallas NR, Harrison Y. An automated drop shape apparatus and the surface tension of pure water. Colloids Surf A Physicochem Eng Asp. 1990;43:169–94.

    CAS  Google Scholar 

  62. Martos A, Koch W, Jiskoot W, Wuchner K, Winter G, Friess W, et al. Trends on analytical characterization of polysorbates and their degradation products in biopharmaceutical formulations. J Pharm Sci. 2017;106:1722–35.

    CAS  PubMed  Google Scholar 

  63. Hildebrand A, Garidel P, Neubert R, Blume A. Thermodynamics of demicellization of mixed micelles composed of sodium oleate and bile salts. Langmuir. 2004;20:320–8.

  64. Tsamaloukas AD, Beck A, Heerklotz H. Modeling the micellization behavior of mixed and pure n-alkyl-maltosides. Langmuir. 2009;25:4393–401.

    CAS  PubMed  Google Scholar 

  65. Paula S, Sues W, Tuchtenhagen J, Blume A. Thermodynamics of micelle formation as a function of temperature: a high sensitivity titration calorimetry study. J Phys Chem. 1995;99:11742–51.

    CAS  Google Scholar 

  66. Basheva ES, Kralchevsky PA, Danov KD, Ananthapadmanabhan KP, Lips A. The colloid structural forces as a tool for particle characterization and control of dispersion stability. Phys Chem Chem Phys. 2007;9:5183–98.

    CAS  PubMed  Google Scholar 

  67. Rehman N, Ullah H, Alam S, Khaliq Jan A, Wali Khan S, Tariq M. Surface and thermodynamic study of micellization of non ionic surfactant/diblock copolymer system as revealed by surface tension and conductivity. JMES. 2017;8(4):1161–7.

    CAS  Google Scholar 

  68. Niño M, Patino JMR. Surface tension of bovine serum albumin and tween 20 at the air-aqueous interface. J Amer Oil Chem Soc. 1998;75(10):1241–8.

    Google Scholar 

  69. Garidel P, Presser I. Lyophilisation of high-concentration protein formulations. In: Ward KR, Matejtschuk P, editors. Lyophilisation of pharmaceuticals and biologicals: new technologies and approaches, Methods in pharmacology and toxicology, Springer, chapter, vol. 12; 2019. p. 291–325.

  70. Stetefeld J, McKenna SA, Pate TR. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys Rev. 2016;8:409–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mandal AB, Gupta S, Moulik SP. Charcaterisation of Tween 20 and Tween 80 micelles in aqueous medium from transport studies. Indian J Chem. 1985;24A:670–3.

    CAS  Google Scholar 

  72. Chen H, Panagiotopoulos AZ. Molecular modelling of surfactant micellization using solvent-accessible surface area. Langmuir. 2019;25:2443–50.

  73. Robson RJ, Dennis EA. The size, shape, and hydration of nonionic surfactant micelles. Triton X-100. J Phys Chem. 1977;81(11):1075–8.

    CAS  Google Scholar 

  74. Le Maire M, Champeil P, Møller JV. Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta. 2000;1508:86–111.

    PubMed  Google Scholar 

  75. Bhattacharya SC, Das H, und Moulik SP. Effect of Solvent and Micellar Enviroment on Spectroscopic Behavior of the Dye Safranine T. J. Photoch. Photobio. A. 1994;79:109–114.

  76. Penfold J, Thomas RK, Li PX, Petkov JT, Tucker I, Webster JRP, et al. Adsorption at air–water and oil–water interfaces and self-assembly in aqueous solution of ethoxylated polysorbate nonionic surfactants. Langmuir. 2015;31:3003–11.

    CAS  PubMed  Google Scholar 

  77. Kebbel F. Charakterisierung kolloidaler und thermischer Stabilitäten von Antikörpern mittels dynamischer Lichtstreuung. Universität Ulm: Diplomarbeit; 2009.

    Google Scholar 

Download references

Acknowledgements

We thank C. Hoffmann and F. Kebbel for excellent technical assistance and J. Mittag for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Garidel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and Animals

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garidel, P., Blech, M., Buske, J. et al. Surface Tension and Self-association Properties of Aqueous Polysorbate 20 HP and 80 HP Solutions: Insights into Protein Stabilisation Mechanisms. J Pharm Innov 16, 726–734 (2021). https://doi.org/10.1007/s12247-020-09488-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09488-4

Keywords

Navigation