Skip to main content
Log in

Ionic Liquid Forms of Carvedilol: Preparation, Characterization, and Solubility Studies

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

Pharmaceutically active compounds (API) in solid form have several disadvantages which may include polymorphism, poor solubility, and low bioavailability. To overcome these issues, API-based ionic liquids have been proposed to solve this problem.

Methods

Solvent evaporation method was selected to prepare ionic liquid forms of CVD. A binary mixture of CVD with citric acid, tartaric acid, and saccharin in 1:1 M ratio was dissolved in 5 ml of methanol then they left 4 days for solvent evaporation. The solubility of CVD and prepared ionic liquids were measured in different media.

Results

A viscous yellow liquid in all cases was obtained. More than three-unit differences between pKa of CVD and studied compounds and characterization by different instrumental analysis methods confirmed the formation of an ionic liquid form of CVD and the prepared ionic liquids could significantly change the solubility of CVD.

Conclusion

Overall, ionic liquids of CVD could be used for overcoming the disadvantages of its solid form and increasing CVD solubility. However, pH, type, and concentration of dissolution medium and the solubility of counter-ions are critical issues which they should be considered in evaluating solubility of CVD and its ionic liquid forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev. 2013;65(1):315–499. https://doi.org/10.1124/pr.112.005660.

    Article  CAS  PubMed  Google Scholar 

  2. Martínez F, Jouyban A, Acree WE Jr. Pharmaceuticals solubility is still nowadays widely studied everywhere. Pharm Sci. 2017;23:1–2. https://doi.org/10.15171/PS.2017.01.

    Article  Google Scholar 

  3. Jouyban A. Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J Pharm Pharm Sci. 2008;11(1):32–58.

    Article  CAS  Google Scholar 

  4. Brewster ME, Loftsson T. Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev. 2007;59(7):645–66. https://doi.org/10.1016/j.addr.2007.05.012.

    Article  CAS  PubMed  Google Scholar 

  5. Vinarov Z, Katev V, Radeva D, Tcholakova S, Denkov ND. Micellar solubilization of poorly water-soluble drugs: effect of surfactant and solubilizate molecular structure. Drug Dev Ind Pharm. 2018;44(4):677–86. https://doi.org/10.1080/03639045.2017.1408642.

    Article  CAS  PubMed  Google Scholar 

  6. Kesisoglou F, Panmai S, Wu Y. Nanosizing—oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59(7):631–44. https://doi.org/10.1016/j.addr.2007.05.003.

    Article  CAS  PubMed  Google Scholar 

  7. Keramatnia F, Shayanfar A, Jouyban A. Thermodynamic solubility profile of carbamazepine–cinnamic acid cocrystal at different pH. J Pharm Sci. 2015;104(8):2559–65. https://doi.org/10.1002/jps.24525.

    Article  CAS  PubMed  Google Scholar 

  8. Childs SL, Stahly GP, Park A. The salt-cocrystal continuum: the influence of crystal structure on ionization state. Mol Pharm. 2007;4(3):323–38. https://doi.org/10.1021/mp0601345.

    Article  CAS  PubMed  Google Scholar 

  9. Cerreia Vioglio P, Chierotti MR, Gobetto R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv Drug Deliv Rev. 2017;117:86–110. https://doi.org/10.1016/j.addr.2017.07.001.

    Article  CAS  PubMed  Google Scholar 

  10. Yadav B, Balasubramanian S, Chavan RB, Thipparaboina R, Naidu VG, Shastri NR. Hepatoprotective cocrystals and salts of riluzole: prediction, synthesis, solid state characterization and evaluation. Cryst Growth Des. 2018. https://doi.org/10.1021/acs.cgd.7b01514.

    Article  CAS  Google Scholar 

  11. Ventura SPM, Silva FAE, Quental MV, Mondal D, Freire MG, Coutinho JAP. Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chem Rev. 2017;117(10):6984–7052. https://doi.org/10.1021/acs.chemrev.6b00550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martins MAP, Frizzo CP, Moreira DN, Zanatta N, Bonacorso HG. Ionic liquids in heterocyclic synthesis. Chem Rev. 2008;108(6):2015–50. https://doi.org/10.1021/cr078399y.

    Article  CAS  PubMed  Google Scholar 

  13. Zheng Z, Xu Q, Guo J, Qin J, Mao H, Wang B, et al. Structure-antibacterial activity relationships of imidazolium-type ionic liquid monomers, poly(ionic liquids) and poly(ionic liquid) membranes: effect of alkyl chain length and cations. ACS Appl Mater Interfaces. 2016;8(20):12684–92. https://doi.org/10.1021/acsami.6b03391.

    Article  CAS  PubMed  Google Scholar 

  14. Moniruzzaman M, Tahara Y, Tamura M, Kamiya N, Goto M. Ionic liquid-assisted transdermal delivery of sparingly soluble drugs. Chem Commun. 2010;46(9):1452–4. https://doi.org/10.1039/b907462g.

    Article  CAS  Google Scholar 

  15. Mizuuchi H, Jaitely V, Murdan S, Florence AT. Room temperature ionic liquids and their mixtures: potential pharmaceutical solvents. Eur J Pharm Sci. 2008;33(4–5):326–31. https://doi.org/10.1016/j.ejps.2008.01.002.

    Article  CAS  PubMed  Google Scholar 

  16. Alawi MA, Hamdan II, Sallam AA, Heshmeh NA. Solubility enhancement of glibenclamide in choline-tryptophan ionic liquid: preparation, characterization and mechanism of solubilization. J Mol Liq. 2015;212:629–34. https://doi.org/10.1016/j.molliq.2015.10.006.

    Article  CAS  Google Scholar 

  17. Faria RA, Bogel-Łukasik E. Solubilities of pharmaceutical and bioactive compounds in trihexyl(tetradecyl)phosphonium chloride ionic liquid. Fluid Phase Equilib. 2015;397:18–25. https://doi.org/10.1016/j.fluid.2015.03.053.

    Article  CAS  Google Scholar 

  18. Shamshina JL, Kelley SP, Gurau G, Rogers RD. Develop ionic liquid drugs. Nature. 2015;528(7581):188–9. https://doi.org/10.1038/528188a.

    Article  CAS  PubMed  Google Scholar 

  19. Shamshina JL, Barber PS, Rogers RD. Ionic liquids in drug delivery. Expert Opin Drug Deliv. 2013;10(10):1367–81. https://doi.org/10.1517/17425247.2013.808185.

    Article  CAS  PubMed  Google Scholar 

  20. Miwa Y, Hamamoto H, Ishida T. Lidocaine self-sacrificially improves the skin permeation of the acidic and poorly water-soluble drug etodolac via its transformation into an ionic liquid. Eur J Pharm Biopharm. 2016;102:92–100. https://doi.org/10.1016/j.ejpb.2016.03.003.

    Article  CAS  PubMed  Google Scholar 

  21. Shadid M, Gurau G, Shamshina JL, Chuang BC, Hailu S, Guan E, et al. Sulfasalazine in ionic liquid form with improved solubility and exposure. Med Chem Commun. 2015;6(10):1837–41. https://doi.org/10.1039/c5md00290g.

    Article  CAS  Google Scholar 

  22. Egorova KS, Gordeev EG, Ananikov VP. Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev. 2017;117(10):7132–89. https://doi.org/10.1021/acs.chemrev.6b00562.

    Article  CAS  PubMed  Google Scholar 

  23. Stoimenovski J, Dean PM, Izgorodina EI, MacFarlane DR. Protic pharmaceutical ionic liquids and solids: aspects of protonics. Faraday Discuss. 2012;154:335–52. https://doi.org/10.1039/c1fd00071c.

    Article  CAS  PubMed  Google Scholar 

  24. Stoimenovski J, MacFarlane DR, Bica K, Rogers RD. Crystalline vs. ionic liquid salt forms of active pharmaceutical ingredients: a position paper. Pharm Res. 2010;27(4):521–6. https://doi.org/10.1007/s11095-009-0030-0.

    Article  CAS  PubMed  Google Scholar 

  25. Hamed R, Awadallah A, Sunoqrot S, Tarawneh O, Nazzal S, AlBaraghthi T, et al. pH-dependent solubility and dissolution behavior of carvedilol—case example of a weakly basic BCS class II drug. AAPS PharmSciTech. 2016;17(2):418–26. https://doi.org/10.1208/s12249-015-0365-2.

    Article  CAS  PubMed  Google Scholar 

  26. Rasool MF, Khalil F, Läer S. Optimizing the clinical use of carvedilol in liver cirrhosis using a physiologically based pharmacokinetic modeling approach. Eur J Drug Metab Pharmacokinet. 2017;42(3):383–96. https://doi.org/10.1007/s13318-016-0353-2.

    Article  CAS  PubMed  Google Scholar 

  27. Beattie K, Phadke G, Novakovic J. Carvedilol. Profiles of drug substances, excipients and related methodology. Academic, Waltham. 2013;38:113–57.

    Article  CAS  Google Scholar 

  28. Morgan T. Clinical pharmacokinetics and pharmacodynamics of carvedilol. Clin Pharmacokinet. 1994;26(5):335–46.

    Article  CAS  Google Scholar 

  29. Liu D, Pan H, He F, Wang X, Li J, Yang X, et al. Effect of particle size on oral absorption of carvedilol nanosuspensions: in vitro and in vivo evaluation. Int J Nanomedicine. 2015;10:6425.

    Article  CAS  Google Scholar 

  30. Hiendrawan S, Widjojokusumo E, Veriansyah B, Tjandrawinata RR. Pharmaceutical salts of carvedilol: polymorphism and physicochemical properties. AAPS PharmSciTech. 2017;18(4):1417–25. https://doi.org/10.1208/s12249-016-0616-x.

    Article  CAS  PubMed  Google Scholar 

  31. Loftsson T, Vogensen SB, Desbos C, Jansook P. Carvedilol: solubilization and cyclodextrin complexation: a technical note. AAPS PharmSciTech. 2008;9(2):425–30. https://doi.org/10.1208/s12249-008-9055-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krstić M, Radojević M, Stojanović D, Radojević V, Uskoković P, Ibrić S. Formulation and characterization of nanofibers and films with carvedilol prepared by electrospinning and solution casting method. Eur J Pharm Sci. 2017;101:160–6. https://doi.org/10.1016/j.ejps.2017.02.006.

    Article  CAS  PubMed  Google Scholar 

  33. Wegmann M, Parola L, Bertera FM, Taira CA, Cagel M, Buontempo F, et al. Novel carvedilol paediatric nanomicelle formulation: in-vitro characterization and in-vivo evaluation. J Pharm Pharmacol. 2017;69(5):544–53. https://doi.org/10.1111/jphp.12605.

    Article  CAS  PubMed  Google Scholar 

  34. Yuvaraja K, Khanam J. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid. J Pharm Biomed Anal. 2014;96:10–20. https://doi.org/10.1016/j.jpba.2014.03.019.

    Article  CAS  PubMed  Google Scholar 

  35. Shayanfar A, Jouyban A. Drug-drug coamorphous systems: characterization and physicochemical properties of coamorphous atorvastatin with carvedilol and glibenclamide. J Pharm Innov. 2013;8(4):218–28. https://doi.org/10.1007/s12247-013-9162-1.

    Article  Google Scholar 

  36. Pokharkar VB, Mandpe LP, Padamwar MN, Ambike AA, Mahadik KR, Paradkar A. Development, characterization and stabilization of amorphous form of a low Tg drug. Powder Technol. 2006;167(1):20–5. https://doi.org/10.1016/j.powtec.2006.05.012.

    Article  CAS  Google Scholar 

  37. www.accessdata.fda.gov/scripts/fdcc/?set=SCOGS. Accessed 10 Sept 2017

  38. www.fda.gov/food/ingredientspackaginglabeling/foodadditivesingredients/ucm397725.htm. Accessed 10 Sept 2017

  39. Keramatnia F, Jouyban A, Valizadeh H, Delazar A, Shayanfar A. Ketoconazole ionic liquids with citric and tartaric acid: synthesis, characterization and solubility study. Fluid Phase Equilib. 2016;425:108–13. https://doi.org/10.1016/j.fluid.2016.05.016.

    Article  CAS  Google Scholar 

  40. Balk A, Holzgrabe U, Meinel L. Pro et contra’ ionic liquid drugs - challenges and opportunities for pharmaceutical translation. Eur J Pharm Biopharm. 2015;94:291–304. https://doi.org/10.1016/j.ejpb.2015.05.027.

    Article  CAS  PubMed  Google Scholar 

  41. Cojocaru OA, Bica K, Gurau G, Narita A, McCrary PD, Shamshina JL, et al. Prodrug ionic liquids: functionalizing neutral active pharmaceutical ingredients to take advantage of the ionic liquid form. Med Chem Commun. 2013;4(3):559–63. https://doi.org/10.1039/c3md20359j.

    Article  CAS  Google Scholar 

  42. Cojocaru OA, Kelley SP, Gurau G, Rogers RD. Procainium acetate versus procainium acetate dihydrate: irreversible crystallization of a room-temperature active pharmaceutical-ingredient ionic liquid upon hydration. Cryst Growth Des. 2013;13(8):3290–3. https://doi.org/10.1021/cg400686e.

    Article  CAS  Google Scholar 

  43. Shamshina JL, Cojocaru OA, Kelley SP, Bica K, Wallace SP, Gurau G, et al. Acyclovir as an ionic liquid cation or anion can improve aqueous solubility. ACS Omega. 2017;2(7):3483–93.

    Article  CAS  Google Scholar 

  44. Ferraz R, Branco LC, Marrucho IM, Araújo JMM, Rebelo LPN, Da Ponte MN, et al. Development of novel ionic liquids based on ampicillin. Med Chem Commun. 2012;3(4):494–7. https://doi.org/10.1039/c2md00269h.

    Article  CAS  Google Scholar 

  45. Peng C, Chan MN, Chan CK. The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions. Environ Sci Technol. 2001;35(22):4495–501. https://doi.org/10.1021/es0107531.

    Article  CAS  PubMed  Google Scholar 

  46. Wouters J, Quéré L. Pharmaceutical salts and co-crystals. London: Royal Society of Chemistry; 2012.

    Google Scholar 

  47. Banerjee R, Bhatt PM, Ravindra NV, Desiraju GR. Saccharin salts of active pharmaceutical ingredients, their crystal structures, and increased water solubilities. Cryst Growth Des. 2005;5(6):2299–309. https://doi.org/10.1021/cg050125l.

    Article  CAS  Google Scholar 

  48. ACD/labs 6.00 Advanced Chemistry Development

  49. United States Pharmacopeia 30-NF25. Rockville: United States Pharmacopeial Convention; 2007

  50. www.accessdata.fda.gov/scripts/cder/dissolution/dsp_getallData.cfm. Accessed 10 Sept 2017

  51. Committee JPE. The Japanese pharmacopoeia. Tokyo: Hirokawa Press; 2006.

    Google Scholar 

  52. Yalkowsky SH, He Y, Jain P. Handbook of aqueous solubility data. Boca Raton: CRC press; 2010.

    Google Scholar 

  53. David SE, Timmins P, Conway BR. Impact of the counterion on the solubility and physicochemical properties of salts of carboxylic acid drugs. Drug Dev Ind Pharm. 2012;38(1):93–103. https://doi.org/10.3109/03639045.2011.592530.

    Article  CAS  PubMed  Google Scholar 

  54. Chrzanowski FA, Ahmad K. The preparation and evaluation of salt forms of linogliride with reduced solubilities as candidates for extended release. Drug Dev Ind Pharm. 2017;43(3):421–31. https://doi.org/10.1080/03639045.2016.1257019.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This article is a part of the results of S.S’s Pharm.D thesis No. 3965 registered at Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. The authors would like to give special thanks to East Azarbaijan Sciences and Technology Park for providing DSC thermograms. We appreciate the editor and reviewers of this manuscript for editing and their valuable comments.

Funding

A.S. thanks the Ministry of Health and Medical Education (grant for young assistant professors), Tehran, Iran, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shayanfar.

Electronic Supplementary Material

ESM 1

(DOCX 3997 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shayanfar, S., Shayanfar, A. Ionic Liquid Forms of Carvedilol: Preparation, Characterization, and Solubility Studies. J Pharm Innov 14, 382–390 (2019). https://doi.org/10.1007/s12247-018-9361-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-018-9361-x

Keywords

Navigation