Skip to main content

Advertisement

Log in

Optimization of Noscapine-Loaded mPEG-PLGA Nanoparticles and Release Study: a Response Surface Methodology Approach

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to incorporate noscapine (Nos) into methoxy poly (ethylene glycol)-poly (lactide-co-glycolide) (mPEG-PLGA) nanoparticles and optimize its size, entrapment efficacy% (EE%), and drug loading% (DL%).

Methods

Nanoprecipitation was employed for preparation of the nanoparticles. In this respect, the Box–Behnken experimental design was applied to optimize preparation of formulation ingredients and process conditions. Polymer concentration (Polymer Conc.), drug concentration (Drug Conc.), and solvent to antisolvent ratio (S/A) were chosen as independent factors, while size, EE%, and DL% were dependent parameters.

Results

Obtained model demonstrated that polymer and drug concentration had direct effects on size while the effect of S/A was non-linear and somehow negligible. Also, to have maximum EE% and DL%, drug Conc. should be at the highest level, while polymer Conc. should be decreased. The optimized sample, with mean ± SD size (nm), EE%, and DL% of 156 ± 17 nm, 98 ± 0.15, and 19.1 ± 0.5, respectively, was achieved experimentally, by utilizing drug Conc. of 0.25% (W/V), polymer Conc. of 0.19% (W/V), and S/A of 0.93. The optimized sample showed spherical shape and monodisperse distribution using scanning electron microscopy. In vitro release profile of the optimized nanoparticles showed a biphasic release pattern for the drug. A 3-month stability study of freeze-dried formulation demonstrated negligible change in size and DL%.

Conclusion

The obtained model showed that concentrations of polymer and drug are the dominant factors in determining size, EE%, and DL%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen X, Dang T-TT, Facchini PJ. Noscapine comes of age. Phytochemistry. 2015;111:7–13.

    Article  PubMed  CAS  Google Scholar 

  2. Chougule M, Patel AR, Sachdeva P, Jackson T, Singh M. Anticancer activity of noscapine, an opioid alkaloid in combination with cisplatin in human non-small cell lung cancer. Lung Cancer. 2011;71(3):271–82.

    Article  PubMed  Google Scholar 

  3. Lopus M, Naik PK. Taking aim at a dynamic target: noscapinoids as microtubule-targeted cancer therapeutics. Pharmacol Rep. 2015;67(1):56–62.

    Article  PubMed  CAS  Google Scholar 

  4. Mujokoro B, Adabi M, Sadroddiny E, Adabi M, Khosravani M. Nano-structures mediated co-delivery of therapeutic agents for glioblastoma treatment: a review. Mater Sci Eng C. 2016;69:1092–102.

    Article  CAS  Google Scholar 

  5. Karlsson M, Dahlström B, Eckernäs S-Å, Johansson M, Tufvesson Alm A. Pharmacokinetics of oral noscapine. Eur J Clin Pharmacol. 1990;39(3):275–9.

    Article  PubMed  CAS  Google Scholar 

  6. Andey T, Patel A, Marepally S, Chougule M, Spencer SD, Rishi AK, et al. Formulation, pharmacokinetic, and efficacy studies of mannosylated self-emulsifying solid dispersions of noscapine. PLoS One. 2016;11(1):e0146804.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Yadav K, Yadav D, Yadav M, Kumar S. Noscapine loaded PLGA nanoparticles prepared using oil-in-water emulsion solvent evaporation method. J Nanopharm Drug Deliv. 2016;3(1):97–105.

    Article  Google Scholar 

  8. Chougule MB, Patel AR, Patlolla R, Jackson T, Singh M. Epithelial transport of noscapine across cell monolayer and influence of absorption enhancers on in vitro permeation and bioavailability: implications for intestinal absorption. J Drug Target. 2014;22(6):498–508.

    Article  PubMed  CAS  Google Scholar 

  9. Madan J, Dhiman N, Sardana S, Aneja R, Chandra R, Katyal A. Long-circulating poly (ethylene glycol)-grafted gelatin nanoparticles customized for intracellular delivery of noscapine: preparation, in-vitro characterization, structure elucidation, pharmacokinetics, and cytotoxicity analyses. Anti-Cancer Drugs. 2011;22(6):543–55.

    Article  PubMed  CAS  Google Scholar 

  10. Zarchi AAK, Abbasi S, Faramarzi MA, Gilani K, Ghazi-Khansari M, Amani A. Development and optimization of N-Acetylcysteine-loaded poly (lactic-co-glycolic acid) nanoparticles by electrospray. Int J Biol Macromol. 2015;72:764–70.

    Article  CAS  Google Scholar 

  11. Acharya S, Sahoo SK. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv Drug Deliv Rev. 2011;63(3):170–83.

    Article  PubMed  CAS  Google Scholar 

  12. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869–76.

    Article  PubMed  CAS  Google Scholar 

  13. Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198–205.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Noori Koopaei M, Khoshayand MR, Mostafavi SH, Amini M, Khorramizadeh MR, Jeddi Tehrani M, et al. Docetaxel loaded PEG-PLGA nanoparticles: optimized drug loading, in vitro cytotoxicity and in vivo antitumor effect. Iran J Pharm Res. 2014;13(3):819–33.

    PubMed  PubMed Central  Google Scholar 

  15. Snehalatha M, Venugopal K, Saha RN. Etoposide-loaded PLGA and PCL nanoparticles I: preparation and effect of formulation variables. Drug Deliv. 2008;15(5):267–75.

    Article  CAS  Google Scholar 

  16. Yeo Y. Nanoparticulate drug delivery systems: strategies, technologies, and applications. Hoboken: John Wiley & Sons; 2013.

  17. Yue PF, Lu XY, Zhang ZZ, Yuan HL, Zhu WF, Zheng Q, et al. The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion. AAPS PharmSciTech. 2009;10(2):376–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol. 2011;9(1):55.

    Article  CAS  Google Scholar 

  19. Diehl KH, Hull R, Morton D, Pfister R, Rabemampianina Y, Smith D, et al. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J Appl Toxicol. 2001;21(1):15–23.

    Article  PubMed  CAS  Google Scholar 

  20. Huh KM, Lee SC, Cho YW, Lee J, Jeong JH, Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release. 2005;101(1):59–68.

    Article  PubMed  CAS  Google Scholar 

  21. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed. 2014;53(46):12320–64.

    CAS  Google Scholar 

  22. Kowalczuk A, Trzcinska R, Trzebicka B, Müller AH, Dworak A, Tsvetanov CB. Loading of polymer nanocarriers: factors, mechanisms and applications. Prog Polym Sci. 2014;39(1):43–86.

    Article  CAS  Google Scholar 

  23. Yao J, Zhang Y, Hu Q, Zeng D, Hua F, Meng W, et al. Optimization of paeonol-loaded poly (butyl-2-cyanoacrylate) nanocapsules by central composite design with response surface methodology together with the antibacterial properties. Eur J Pharm Sci. 2017;101:189–99.

    Article  PubMed  CAS  Google Scholar 

  24. Ravi PR, Vats R, Dalal V, Gadekar N. Design, optimization and evaluation of poly-ɛ-caprolactone (PCL) based polymeric nanoparticles for oral delivery of lopinavir. Drug Dev Ind Pharm. 2015;41(1):131–40.

    Article  PubMed  CAS  Google Scholar 

  25. Ribeiro AF, Ferreira CTG, dos Santos JF, Cabral LM, de Sousa VP. Design of experiments for the development of poly (d, l-lactide-co-glycolide) nanoparticles loaded with Uncaria tomentosa. J Nanopart Res. 2015;17(2):69.

    Article  CAS  Google Scholar 

  26. Shalaby KS, Soliman ME, Casettari L, Bonacucina G, Cespi M, Palmieri GF, et al. Determination of factors controlling the particle size and entrapment efficiency of noscapine in PEG/PLA nanoparticles using artificial neural networks. Int J Nanomedicine. 2014;9:4953.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Mendyk A, Jachowicz R. Unified methodology of neural analysis in decision support systems built for pharmaceutical technology. Expert Syst Appl. 2007;32(4):1124–31.

    Article  Google Scholar 

  28. Shaikh J, Ankola D, Beniwal V, Singh D, Kumar MR. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur J Pharm Sci. 2009;37(3–4):223–30.

    Article  PubMed  CAS  Google Scholar 

  29. Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. AJPS. 2016;11(3):404–16.

    Google Scholar 

  30. Sharma D, Maheshwari D, Philip G, Rana R, Bhatia S, Singh M, et al. Formulation and optimization of polymeric nanoparticles for intranasal delivery of lorazepam using Box-Behnken design: in vitro and in vivo evaluation. Biomed Res Int. 2014;2014:1–14.

    Google Scholar 

  31. El-Hammadi MM, Delgado ÁV, Melguizo C, Prados JC, Arias JL. Folic acid-decorated and PEGylated PLGA nanoparticles for improving the antitumour activity of 5-fluorouracil. Int J Pharm. 2017;516(1):61–70.

    Article  PubMed  CAS  Google Scholar 

  32. Kim S, Shi Y, Kim JY, Park K, Cheng J-X. Overcoming the barriers in micellar drug delivery: loading efficiency, in vivo stability, and micelle–cell interaction. Expert Opin Drug Deliv. 2010;7(1):49–62.

    Article  PubMed  CAS  Google Scholar 

  33. Liu J, Xiao Y, Allen C. Polymer–drug compatibility: a guide to the development of delivery systems for the anticancer agent, ellipticine. J Pharm Sci. 2004;93(1):132–43.

    Article  PubMed  CAS  Google Scholar 

  34. Tyrrell ZL, Shen Y, Radosz M. Fabrication of micellar nanoparticles for drug delivery through the self-assembly of block copolymers. Prog Polym Sci. 2010;35(9):1128–43.

    Article  CAS  Google Scholar 

  35. Zhao Y, Fay F, Hak S, Perez-Aguilar JM, Sanchez-Gaytan BL, Goode B, et al. Augmenting drug-carrier compatibility improves tumour nanotherapy efficacy. Nat Commun. 2016;7:11221.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Srinivas NSK, Verma R, Kulyadi GP, Kumar LA. Quality by design approach on polymeric nanocarrier delivery of gefitinib: formulation, in vitro, and in vivo characterization. Int J Nanomedicine. 2017;12:15.

    Article  CAS  Google Scholar 

  37. Elsabahy M, Wooley KL. Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev. 2012;41(7):2545–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. 2015;33(9):941–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Zhang K, Fang H, Chen Z, Taylor J-SA, Wooley KL. Shape effects of nanoparticles conjugated with cell-penetrating peptides (HIV Tat PTD) on CHO cell uptake. Bioconjug Chem. 2008;19(9):1880–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Zhang K, Rossin R, Hagooly A, Chen Z, Welch MJ, Wooley KL. Folate-mediated cell uptake of shell-crosslinked spheres and cylinders. J Polym Sci A Polym Chem. 2008;46(22):7578–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Freimann K, Arukuusk P, Kurrikoff K, Pärnaste L, Raid R, Piirsoo A, et al. Formulation of stable and homogeneous cell-penetrating peptide NF55 nanoparticles for efficient gene delivery in vivo. Mol Ther Nucleic Acids. 2018;10:28–35.

    Article  PubMed  CAS  Google Scholar 

  42. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  43. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–66.

    Article  PubMed  CAS  Google Scholar 

  44. Danhier F, Lecouturier N, Vroman B, Jérôme C, Marchand-Brynaert J, Feron O, et al. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: in vitro and in vivo evaluation. J Control Release. 2009;133(1):11–7.

    Article  PubMed  CAS  Google Scholar 

  45. Sharma G, Park J, Sharma AR, Jung J-S, Kim H, Chakraborty C, et al. Methoxy poly (ethylene glycol)-poly (lactide) nanoparticles encapsulating quercetin act as an effective anticancer agent by inducing apoptosis in breast cancer. Pharm Res. 2015;32(2):723–35.

    Article  PubMed  CAS  Google Scholar 

  46. Duan Y, Sun X, Gong T, Wang Q, Zhang Z. Preparation of DHAQ-loaded mPEG-PLGA-mPEG nanoparticles and evaluation of drug release behaviors in vitro/in vivo. J Mater Sci Mater Med. 2006;17(6):509–16.

    Article  PubMed  CAS  Google Scholar 

  47. Adabi M, Naghibzadeh M, Adabi M, Zarrinfard MA, Esnaashari SS, Seifalian AM, et al. Biocompatibility and nanostructured materials: applications in nanomedicine. Artif Cells Nanomed Biotechnol. 2017;45(4):833–42.

    Article  PubMed  CAS  Google Scholar 

  48. Ernsting MJ, Murakami M, Roy A, Li S-D. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release. 2013;172(3):782–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. de Mello VA, Ricci-Júnior E. Encapsulation of naproxen in nanostructured system: structural characterization and in vitro release studies. Quim Nova. 2011;34(6):933–9.

    Article  Google Scholar 

  50. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3(3):1377–97.

    Article  CAS  Google Scholar 

  51. Arias JL. Nanotechnology and drug delivery, volume one: nanoplatforms in drug delivery, vol. 380. Boca Raton: CRC Press; 2014.

    Book  Google Scholar 

  52. Kamaraj N, Rajaguru PY, kumar Issac P, Sundaresan S. Fabrication, characterization, in vitro drug release and glucose uptake activity of 14-deoxy, 11, 12-didehydroandrographolide loaded polycaprolactone nanoparticles. Asian J Pharm Sci. 2017;12:353–62.

    Article  Google Scholar 

  53. Jana U, Mohanty AK, Pal SL, Manna PK, Mohanta GP. Felodipine loaded PLGA nanoparticles: preparation, physicochemical characterization and in vivo toxicity study. Nano Convergence. 2014;1(1):31.

    Article  CAS  Google Scholar 

  54. Kumar L, Reddy M, Shirodkar R, Pai G, Krishna V, Verma R. Preparation and characterisation of fluconazole vaginal films for the treatment of vaginal candidiasis. Indian J Pharm Sci. 2013;75(5):585–90.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was granted by the Tehran University of Medical Science and Health Services Grant No. 94-01-87-28482.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Amani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esnaashari, S.S., Amani, A. Optimization of Noscapine-Loaded mPEG-PLGA Nanoparticles and Release Study: a Response Surface Methodology Approach. J Pharm Innov 13, 237–246 (2018). https://doi.org/10.1007/s12247-018-9318-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-018-9318-0

Keywords

Navigation