Skip to main content
Log in

VIRAL: coupling congestion control with fair video quality metric

  • Published:
Annals of Telecommunications Aims and scope Submit manuscript

Abstract

Video streaming is often carried out by congestion controlled transport protocols to preserve network sustainability. However, the success of the growth of such non-live video flows is linked to the user quality of experience. Thus, one possible solution is to deploy complex quality of service systems inside the core network. Another possibility would be to keep the end-to-end principle while making aware transport protocols of video quality rather than throughput. The objective of this article is to investigate the latter by proposing a novel transport mechanism which targets video quality fairness among video flows. Our proposal, called VIRAL for virtual rate-quality curve, allows congestion controlled transport protocols to provide fairness in terms of both throughput and video quality. VIRAL is compliant with any rate-based congestion control mechanisms that enable a smooth sending rate for multimedia applications. Implemented inside TFRC a TCP-friendly protocol, we show that VIRAL enables both intra-fairness between video flows in terms of video quality and inter-fairness in terms of throughput between TCP and video flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. https://personnel.isae-supaero.fr/emmanuel-lochin/projects-and-softwares.html

References

  1. Wang B., Kurose J., Shenoy P., Towsley D. (2008) Multimedia streaming via TCP: an analytic performance study. ACM Trans Multimedia Comput Commun Appl 4(2):16:1–16:22. https://doi.org/10.1145/1352012.1352020

    Article  Google Scholar 

  2. Floyd S, Handley M, Padhye J, Widmer J (2008) TCP friendly rate control (TFRC): protocol specification

  3. Floyd S, Handley M, Padhye J, Widmer J (2000) Equation-based congestion control for unicast applications. In: ACM SIGCOMM

  4. Gu X, Di P, Wolf L (2006) Performance evaluation of DCCP: a focus on smoothness and TCP-friendliness. Annales Des Télécommunications 61(1):46–71. https://doi.org/10.1007/BF03219968

    Article  Google Scholar 

  5. Welzl D, Damjanovic M (2009) MulTFRC: providing weighted fairness for multimedia applications (and others too!). SIGCOMM Comput Commun Rev 39(3):5–12

    Article  Google Scholar 

  6. Jourjon G, Lochin E, Sénac P (2008) Design, implementation and evaluation of a QoS-aware transport protocol. Comput Commun 3(n. 8):1713–1722

    Article  Google Scholar 

  7. Widmer J, Denda R, Mauve M (2001) A survey on TCP-friendly congestion control. IEEE Netw 15(3):28–37. https://doi.org/10.1109/65.923938

    Article  Google Scholar 

  8. Murata G, Hasegawa M (2001) Survey on fairness issues in tcp congestion control mechanisms. IEICE Trans Commun E84-B(8):1461–1472

    Google Scholar 

  9. Zhang Q, Zhu W, Zhang Y (2001) Resource allocation for multimedia streaming over the internet. IEEE Trans on Multimedia 3(3):339–355

    Article  Google Scholar 

  10. Tsaoussidis P, Papadimitriou V (2007) SSVP: A congestion control scheme for real-time video streaming. Comput Netw 51(15):4377–4395

    Article  Google Scholar 

  11. Thai T, Changuel N, Kerboeuf S, Faucheux F, Lochin E, Lacan J (2013) Q-AIMD: A congestion aware video quality control mechanism. In: 20th International Packet Video Workshop (PV), pp 1–820th

  12. Gill P, Arlitti M, Li Z, Mahanti A (2007) Youtube traffic characterization: a view from the edge. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet Measurement, ACM, New York, IMC ’07, pp 15–28

  13. Nafaai A, Murphy L, Murphy S (2008) Analysis of a large-scale VoD architecture for broadband operators: a P2P-based solution. IEEE Commun Mag 46(12):47–55. https://doi.org/10.1109/MCOM.2008.4689207

    Article  Google Scholar 

  14. Celis Muñoz E, Le Denmat F, Morin A, Lagrange X (2015) Multimedia content delivery trigger in a mobile network to reduce the peak load. Ann Telecommun - Ann Telecommun 70(7):321–330

    Article  Google Scholar 

  15. Liui J, Simon Q, Yang G (2018) Congestion avoidance and load balancing in content placement and request redirection for mobile CDN. IEEE/ACM Trans Networking PP(99):1–13. https://doi.org/10.1109/TNET.2018.2804979

    Article  Google Scholar 

  16. Jingyu Y, Qionghai D, Wenli X, Rong D (2005) A rate control algorithm for MPEG-2 to H.264 real-time transcoding. Visual Communications and Image Processing

  17. Ma S, Gao W, Lu Y (2005) Rate-distortion analysis for h.264/AVC video coding and its application to rate control. IEEE Trans Circuits Syst Video Technol 15(12):1533–1544

    Article  Google Scholar 

  18. Chikkerur S, Sundaram V, Reisslein M , Karam L (2011) Objective video quality assessment methods: a classification, review, and performance comparison. IEEE Trans on Broadcasting 57(2):165–182

    Article  Google Scholar 

  19. Jain R (1991) The art of computer systems performance analysis - techniques for experimental design, measurement, simulation, and modeling. Wiley professional computing, ISBN 978-0-471-50336-1, I-XXVII, 1–685

  20. De Simone et al (2010) A h.264-AVC video database for the evaluation of quality metrics. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Dallas, TX, 2010, pp 2430–2433. https://doi.org/10.1109/ICASSP.2010.5496296

  21. Habachi O, Shiang H, Van Der Schaar M, Hayel Y (2013) Online learning based congestion control for adaptive multimedia transmission. IEEE Trans Signal Process 61(6):1460–1469

    Article  MathSciNet  Google Scholar 

  22. Puri R, Lee K, Ramchandran K, Bharghavan V (2001) An integrated source transcoding and congestion control paradigm for video streaming in the internet. IEEE Trans on Multimedia 3(1):18–32

    Article  Google Scholar 

  23. Choe Y, Jung Y (2010) Resource-aware and quality-fair video-streaming using multiple adaptive TCP connections. Comput Electr Eng 36(4):702–717

    Article  Google Scholar 

  24. Jourjon G, Lochin E, Sénac P (2007) Towards sender-based TFRC. In: 2007 IEEE International Conference on Communications, pp 1588–1593. https://doi.org/10.1109/ICC.2007.266

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Lochin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thai, T.T., Lochin, E. & Lacan, J. VIRAL: coupling congestion control with fair video quality metric. Ann. Telecommun. 75, 67–76 (2020). https://doi.org/10.1007/s12243-019-00717-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12243-019-00717-7

Keywords

Navigation