Skip to main content
Log in

Variability of Plant and Surface Soil Carbon Concentration Among Saltmarsh Habitats in Ireland

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Saltmarshes are disproportionally efficient at sequestering C into their substrates and thus help to mitigate climate change but are declining globally because of human pressures. Accurately assessing their C storage capacity to inform coastal management is important, but variability among saltmarsh vegetation types is rarely investigated explicitly. Using field surveys across 15 Irish saltmarshes, we characterised C concentration variability among plant assemblages, in above- and below-ground plant parts, surface soil (upper 10 cm; indicative of the accumulation rate of particular vegetation communities, as opposed to the full depth profile aggregated throughout the different successional stages) and their three combined pools. We also assessed if environmental data can improve C models. We found between 2- and 17-fold variability in C concentration among the vegetation classes. Increasing the resolution of vegetation classification usually improved our C models. C concentration in most pools increased with elevation and decreased with the proportion of sand in the soil, whereas soil salinity was not influential. Biological and environmental variables alone were sufficient to predict above-ground plant C and soil C, respectively, but for below-ground plant C their combination was best. Not accounting for any vegetation heterogeneity within and among saltmarshes can introduce error in C inventories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam, P. 2002. Saltmarshes in a time of change. Environmental Conservation 29: 39–61. https://doi.org/10.1017/S0376892902000048.

    Article  Google Scholar 

  • Barton, K. 2020. MuMIn: Multi-Model Inference. R Package Version 1 (43): 17.

    Google Scholar 

  • Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48. https://doi.org/10.18637/jss.v067.i01.

  • Baustian, M.M., C.L. Stagg, C.L. Perry, L.C. Moss, T.J.B. Carruthers, and M. Allison. 2017. Relationships between salinity and short-term soil carbon accumulation rates from marsh types across a landscape in the Mississippi River Delta. Wetlands 37: 313–324. https://doi.org/10.1007/s13157-016-0871-3.

    Article  Google Scholar 

  • Beaumont, N.J., L. Jones, A. Garbutt, J.D. Hansom, and M. Toberman. 2014. The value of carbon sequestration and storage in coastal habitats. Estuarine, Coastal and Shelf Science 137: 32–40. https://doi.org/10.1016/j.ecss.2013.11.022.

    Article  Google Scholar 

  • Brophy, J.T., P.M. Perrin, M.R. Penk, F.M. Devaney, and K.J. Leyden. 2019. Saltmarsh Monitoring 2017–2018. Irish Wildlife Manuals, 104. Dublin: National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht, Ireland.

  • Bulmer, R.H., F. Stephenson, H.F.E. Jones, M. Townsend, J.R. Hillman, L. Schwendenmann, and C.J. Lundquist. 2020. Blue carbon stocks and cross-habitat subsidies. Frontiers in Marine Science 7: 380. https://doi.org/10.3389/fmars.2020.00380.

    Article  Google Scholar 

  • Burden, A., R.A. Garbutt, C.D. Evans, D.L. Jones, and D.M. Cooper. 2013. Carbon sequestration and biogeochemical cycling in a saltmarsh subject to coastal managed realignment. Estuarine, Coastal and Shelf Science 120: 12–20. https://doi.org/10.1016/j.ecss.2013.01.014.

    Article  CAS  Google Scholar 

  • Chmura G.L., S.C. Anisfeld, D.R. Cahoon, J.C. Lynch. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17. https://doi.org/10.1029/2002GB001917.

  • Craft, C.B., E.D. Seneca, and S.W. Broome. 1991. Loss on ignition and Kjeldahl digestion for estimating organic carbon and total nitrogen in estuarine marsh soils: Calibration with dry combustion. Estuaries 14: 175–179. https://doi.org/10.2307/1351691.

    Article  CAS  Google Scholar 

  • De Deyn, G.B., J.H.C. Cornelissen, and R.D. Bardgett. 2008. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters 11: 516–531. https://doi.org/10.1111/j.1461-0248.2008.01164.x.

    Article  Google Scholar 

  • Devaney, F.M., and P.M. Perrin. 2015. Saltmarsh Angiosperm Assessment Tool for Ireland (SMAATIE). Johnstown Castle, Co. Wexford: Environmental Protection Agency.

  • Duarte, C.M., J. Culbertson, and W.C. Dennison. 2009. Global loss of coastal habitats: Rates, causes and consequences. Madrid, Spain: Fundación BBVA.

  • EEC. 1992. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora. Official Journal L206: 7–50.

  • Ford, H., A. Garbutt, C. Ladd, J. Malarkey, and M.W. Skov. 2016. Soil stabilization linked to plant diversity and environmental context in coastal wetlands. Journal of Vegetation Science 27: 259–268. https://doi.org/10.1111/jvs.12367.

  • Fu, C., Y. Li, L. Zeng, H. Zhang, C. Tu, Q. Zhou, K. Xiong, J. Wu, C.M. Duarte, P. Christie, and Y. Luo. 2020. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. Global Change Biology 27: 202–214. https://doi.org/10.1111/gcb.15348.

    Article  Google Scholar 

  • Gedan, K.B., B.R. Silliman, and M.D. Bertness. 2009. Centuries of human-driven change in salt marsh ecosystems. Annual Review of Marine Science 1: 117–141. https://doi.org/10.1146/annurev.marine.010908.163930.

    Article  Google Scholar 

  • Gorham, C., P. Lavery, J.J. Kelleway, C. Salinas, and O. Serrano. 2021. Soil carbon stocks vary across geomorphic settings in Australian temperate tidal marsh ecosystems. Ecosystems 24: 319–334. https://doi.org/10.1007/s10021-020-00520-9.

    Article  CAS  Google Scholar 

  • Hansen, K., C. Butzeck, A. Eschenbach, A. Gröngröft, K. Jensen, and E.-M. Pfeiffer. 2017. Factors influencing the organic carbon pools in tidal marsh soils of the Elbe estuary (Germany). Journal of Soils and Sediments 17: 47–60. https://doi.org/10.1007/s11368-016-1500-8.

    Article  CAS  Google Scholar 

  • Hassink, J. 1997. The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant and Soil 191: 77–87. https://doi.org/10.1023/A:1004213929699.

    Article  CAS  Google Scholar 

  • Hayes, M.A., A. Jesse, B. Hawke, J. Baldock, B. Tabet, D. Lockington, and C.E. Lovelock. 2017. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia. Global Change Biology 23: 4222–4234. https://doi.org/10.1111/gcb.13722.

    Article  Google Scholar 

  • Hinson, A.L., R.A. Feagin, M. Eriksson, R.G. Najjar, M. Herrmann, T.S. Bianchi, M. Kemp, J.A. Hutchings, S. Crooks, and T. Boutton. 2017. The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States. Global Change Biology 23: 5468–5480. https://doi.org/10.1111/gcb.13811.

    Article  Google Scholar 

  • Hodge, A., G. Berta, C. Doussan, F. Merchan, and M. Crespi. 2009. Plant root growth, architecture and function. Plant and Soil 321: 153–187. https://doi.org/10.1007/s11104-009-9929-9.

    Article  CAS  Google Scholar 

  • Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaneous inference in general parametric models. Biometrical Journal 50: 346–363. https://doi.org/10.1002/bimj.200810425.

    Article  Google Scholar 

  • Houghton, R.A. 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850–2000. Tellus B: Chemical and Physical Meteorology 55: 378–390. https://doi.org/10.1034/j.1600-0889.2003.01450.x.

    Article  Google Scholar 

  • Howard, J., S. Hoyt, K. Isensee, E. Pidgeon, and M. Telszewski. 2014. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows. Arlington, Virginia, USA.: Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature.

  • Howard, R.J., P.S. Rafferty, and D.J. Johnson. 2020. Plant community establishment in a coastal marsh restored using sediment additions. Wetlands 40: 877–892. https://doi.org/10.1007/s13157-019-01217-z.

    Article  Google Scholar 

  • Janousek, C.N., and C.L. Folger. 2014. Variation in tidal wetland plant diversity and composition within and among coastal estuaries: Assessing the relative importance of environmental gradients. Journal of Vegetation Science 25: 534–545. https://doi.org/10.1111/jvs.12107.

    Article  Google Scholar 

  • Kell, D.B. 2012. Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: Why and how. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences 367: 1589–1597. https://doi.org/10.1098/rstb.2011.0244.

    Article  CAS  Google Scholar 

  • Kirschke, S., P. Bousquet, P. Ciais, M. Saunois, J.G. Canadell, E.J. Dlugokencky, P. Bergamaschi, D. Bergmann, D.R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E.L. Hodson, S. Houweling, B. Josse, P.J. Fraser, P.B. Krummel, J.-F. Lamarque, R.L. Langenfelds, C. Le Quéré, V. Naik, S. O’Doherty, P.I. Palmer, I. Pison, D. Plummer, B. Poulter, R.G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D.T. Shindell, I.J. Simpson, R. Spahni, L.P. Steele, S.A. Strode, K. Sudo, S. Szopa, G.R. van der Werf, A. Voulgarakis, M. van Weele, R.F. Weiss, J.E. Williams, and G. Zeng. 2013. Three decades of global methane sources and sinks. Nature Geoscience 6: 813. https://doi.org/10.1038/ngeo1955.

    Article  CAS  Google Scholar 

  • Kulawardhana, R.W., R.A. Feagin, S.C. Popescu, T.W. Boutton, K.M. Yeager, and T.S. Bianchi. 2015. The role of elevation, relative sea-level history and vegetation transition in determining carbon distribution in Spartina alterniflora dominated salt marshes. Estuarine, Coastal and Shelf Science 154: 48–57. https://doi.org/10.1016/j.ecss.2014.12.032.

    Article  Google Scholar 

  • Kuznetsova, A., P. Brockhoff, and R. Christensen. 2017. lmerTest package: tests in linear mixed effects models. Journal of Statistical Software 13: 1–26. https://doi.org/10.18637/jss.v082.i13.

  • Le Quéré, C. 2010. Trends in the land and ocean carbon uptake. Current Opinion in Environmental Sustainability 2: 219–224. https://doi.org/10.1016/j.cosust.2010.06.003.

    Article  Google Scholar 

  • Lehmann, J., J. Kinyangi, and D. Solomon. 2007. Organic matter stabilization in soil microaggregates: Implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry 85: 45–57. https://doi.org/10.1007/s10533-007-9105-3.

    Article  Google Scholar 

  • Lenth, R. 2020. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.4.8. https://CRAN.R-project.org/package=emmeans.

  • Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312: 1806–1809. https://doi.org/10.1126/science.1128035.

    Article  CAS  Google Scholar 

  • Lovelock, C.E., T. Atwood, J. Baldock, C.M. Duarte, S. Hickey, P.S. Lavery, P. Masque, P.I. Macreadie, A.M. Ricart, O. Serrano, and A. Steven. 2017. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Frontiers in Ecology and the Environment 15: 257–265. https://doi.org/10.1002/fee.1491.

    Article  Google Scholar 

  • Ma, S., F. He, D. Tian, D. Zou, Z. Yan, Y. Yang, T. Zhou, K. Huang, H. Shen, and J. Fang. 2018. Variations and determinants of carbon content in plants: A global synthesis. Biogeosciences 15: 693–702. https://doi.org/10.5194/bg-15-693-2018.

    Article  CAS  Google Scholar 

  • Macreadie, P.I., D.A. Nielsen, J.J. Kelleway, T.B. Atwood, J.R. Seymour, K. Petrou, R.M. Connolly, A.C. Thomson, S.M. Trevathan-Tackett, and P.J. Ralph. 2017. Can we manage coastal ecosystems to sequester more blue carbon? Frontiers in Ecology and the Environment 15: 206–213. https://doi.org/10.1002/fee.1484.

    Article  Google Scholar 

  • Manning, A., and R.F. Keeling. 2006. Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B: Chemical and Physical Meteorology 58: 95–116. https://doi.org/10.1111/j.1600-0889.2006.00175.x.

    Article  Google Scholar 

  • Mcleod, E., G.L. Chmura, S. Bouillon, R. Salm, M. Björk, C.M. Duarte, C.E. Lovelock, W.H. Schlesinger, and B.R. Silliman. 2011. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560. https://doi.org/10.1890/110004.

    Article  Google Scholar 

  • Mueller, P., D. Granse, S. Nolte, M. Weingartner, S. Hoth, and K. Jensen. 2020. Unrecognized controls on microbial functioning in blue carbon ecosystems: The role of mineral enzyme stabilization and allochthonous substrate supply. Ecology and Evolution 10: 998–1011. https://doi.org/10.1002/ece3.5962.

    Article  Google Scholar 

  • Mueller, P., N. Ladiges, A. Jack, G. Schmiedl, L. Kutzbach, K. Jensen, and S. Nolte. 2019. Assessing the long-term carbon-sequestration potential of the semi-natural salt marshes in the European Wadden Sea. Ecosphere 10: e02556. https://doi.org/10.1002/ecs2.2556.

    Article  Google Scholar 

  • Osland, M., C. Gabler, J. Grace, R. Day, M.L. McCoy, J.L. McLeod, A.S. From, N.M. Enwright, L.C. Feher, C. Stagg, and S. Hartley. 2018. Climate and plant controls on soil organic matter in coastal wetlands. Global Change Biology 24 (536Q): 5379. https://doi.org/10.1111/gcb.14376.

    Article  Google Scholar 

  • Ouyang, X., and S.Y. Lee. 2014. Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences 11: 5057–5071. https://doi.org/10.5194/bg-11-5057-2014.

    Article  Google Scholar 

  • Penk, M.R., P.M. Perrin, R. Kelly, F. O’Neill, and S. Waldren. 2020a. Plant diversity and community composition in temperate northeast Atlantic salt marshes are linked to nutrient concentrations. Applied Vegetation Science 23: 3–13. https://doi.org/10.1111/avsc.12459.

    Article  Google Scholar 

  • Penk, M.R., P.M. Perrin, and S. Waldren. 2020b. Above- to belowground vegetation biomass ratio in temperate North-East Atlantic saltmarshes increases strongly with soil nitrogen gradient. Ecosystems 23: 648–661. https://doi.org/10.1007/s10021-019-00428-z.

    Article  CAS  Google Scholar 

  • Penk, M.R., R. Wilkes, P.M. Perrin, and S. Waldren. 2019. Nutrients in saltmarsh soils are weakly related to those in adjacent coastal waters. Estuaries and Coasts 42: 675–687. https://doi.org/10.1007/s12237-018-00486-x.

    Article  CAS  Google Scholar 

  • Perrin, P.M. 2020. Irish Vegetation Classification - Technical Progress Report No. 6. Waterford, Ireland: National Biodiversity Data Centre.

  • Perrin, P.M., S. Waldren, M.R. Penk, and F.H. O'Neill. 2020. Saltmarsh Function and Human Impacts in Relation to Ecological Status (SAMFHIRES). Research Report 313. Wexford, Ireland: Environmental Protection Agency.

  • Poffenbarger, H.J., B.A. Needelman, and J.P. Megonigal. 2011. Salinity influence on methane emissions from tidal marshes. Wetlands 31: 831–842. https://doi.org/10.1007/s13157-011-0197-0.

    Article  Google Scholar 

  • R Core Team. 2020. R: A language and environment for statistical computing, version 4.0.2. Vienna: R Foundation for Statistical Computing.

  • Ravenek, J.M., H. Bessler, C. Engels, M. Scherer-Lorenzen, A. Gessler, A. Gockele, E. De Luca, V.M. Temperton, A. Ebeling, C. Roscher, B. Schmid, W.W. Weisser, C. Wirth, H. de Kroon, A. Weigelt, and L. Mommer. 2014. Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 123: 1528–1536. https://doi.org/10.1111/oik.01502.

    Article  Google Scholar 

  • Roner, M., A. D’Alpaos, M. Ghinassi, M. Marani, S. Silvestri, E. Franceschinis, and N. Realdon. 2016. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice lagoon, Italy. Advances in Water Resources 93: 276–287. https://doi.org/10.1016/j.advwatres.2015.11.011.

    Article  CAS  Google Scholar 

  • Santos, R., N. Duque-Núñez, and C.B. de los Santos, M. Martins, A.R. Carrasco, and C. Veiga-Pires. 2019. Superficial sedimentary stocks and sources of carbon and nitrogen in coastal vegetated assemblages along a flow gradient. Scientific Reports 9: 610. https://doi.org/10.1038/s41598-018-37031-6.

    Article  CAS  Google Scholar 

  • Schrumpf, M., K. Kaiser, G. Guggenberger, T. Persson, I. Kögel-Knabner, and E.D. Schulze. 2013. Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10: 1675–1691. https://doi.org/10.5194/bg-10-1675-2013.

    Article  CAS  Google Scholar 

  • Spivak, A.C., J. Sanderman, J.L. Bowen, E.A. Canuel, and C.S. Hopkinson. 2019. Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nature Geoscience 12: 685–692. https://doi.org/10.1038/s41561-019-0435-2.

    Article  CAS  Google Scholar 

  • Spohn, M., and L. Giani. 2012. Carbohydrates, carbon and nitrogen in soils of a marine and a brackish marsh as influenced by inundation frequency. Estuarine, Coastal and Shelf Science 107: 89–96. https://doi.org/10.1016/j.ecss.2012.05.006.

    Article  CAS  Google Scholar 

  • Stace, C. 2010. New Flora of the British Isles. Cambridge Cambridge University Press.

  • Torio, D.D., and G.L. Chmura. 2013. Assessing coastal squeeze of tidal wetlands. Journal of Coastal Research 29: 1049–1061. https://doi.org/10.2112/JCOASTRES-D-12-00162.1.

    Article  Google Scholar 

  • Valiela, I., E. Kinney, J. Culberston, E. Peacock, and S. Smith. 2009. Global losses of mangroves and salt marshes. In Global Loss of Coastal Habitats: Rates, Causes and Consequences, ed. C.M. Duarte, 107–138. Madrid: Fundación BBVA.

    Google Scholar 

  • van Ardenne, L.B., S. Jolicouer, D. Bérubé, D. Burdick, and G.L. Chmura. 2018. The importance of geomorphic context for estimating the carbon stock of salt marshes. Geoderma 330: 264–275. https://doi.org/10.1016/j.geoderma.2018.06.003.

    Article  CAS  Google Scholar 

  • Wang, F., K.D. Kroeger, M.E. Gonneea, J.W. Pohlman, and J. Tang. 2019. Water salinity and inundation control soil carbon decomposition during salt marsh restoration: An incubation experiment. Ecology and Evolution 9: 1911–1921. https://doi.org/10.1002/ece3.4884.

    Article  Google Scholar 

  • Winfrey, M.R., and D.M. Ward. 1983. Substrates for sulfate reduction and methane production in intertidal sediments. Applied and Environmental Microbiology 45: 193–199. https://doi.org/10.1128/aem.45.1.193-199.1983.

    Article  CAS  Google Scholar 

  • Yuan, Y., X. Li, J. Jiang, L. Xue, and C.B. Craft. 2020. Distribution of organic carbon storage in different salt-marsh plant communities: A case study at the Yangtze Estuary. Estuarine, Coastal and Shelf Science 243: 106900. https://doi.org/10.1016/j.ecss.2020.106900.

    Article  CAS  Google Scholar 

  • Zhou, J., Y. Wu, Q. Kang, and J. Zhang. 2007. Spatial variations of carbon, nitrogen, phosphorous and sulfur in the salt marsh sediments of the Yangtze Estuary in China. Estuarine, Coastal and Shelf Science 71: 47–59. https://doi.org/10.1016/j.ecss.2006.08.012.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Environmental Protection Agency (Ireland) under a Small Scale Study Grant (2018-CCRP-SS.25) and the SAMFHIRES project (2015-W-MS-19). We thank the reviewers and associate editor for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin R. Penk.

Additional information

Communicated by Charles T. Roman

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 689 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penk, M.R., Perrin, P.M. Variability of Plant and Surface Soil Carbon Concentration Among Saltmarsh Habitats in Ireland. Estuaries and Coasts 45, 1631–1645 (2022). https://doi.org/10.1007/s12237-021-01042-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-01042-w

Keywords

Navigation