Skip to main content
Log in

Effects of Nitrate Exposure on Nitrate Reduction Processes in the Wetland Sediments from the Yellow River Estuary

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Nitrate overloading in estuarine and coastal regions can lead to various environmental problems. However, limited information is available about nitrate reduction processes and their associated contributions to nitrogen removal in estuary environments. In this study, stable isotope tracing, high-throughput sequencing, and qPCR methods were used to explore the effects of different nitrate concentrations (CK, 100 μM, 200 μM, 400 μM, and 600 μM) on the nitrate reduction rates, microbial abundances, and community structures in wetland sediments from the Yellow River estuary. With nitrate concentration increasing, the denitrification rate increased from 1.08 to 5.97 nmol N g−1 h−1, while the anaerobic ammonium oxidation rates decreased from approximate 1.25 to 0.42 nmol N g−1 h−1. Diversity analyses based on high-throughput sequencing data indicated that the Shannon indexes were lower in the 400 and 600 μM nitrate-addition treatments than other treatments, and the 600 μM nitrate treatment has the lowest α-diversity. The β-diversity results showed that the bacterial community compositions were different between the ≤ 200 μM and ≥ 400 μM nitrate concentration treatments. The nitrate concentration can be divided into high (≥ 400μM) and low (≤ 200) groups based on multiple regression analyses. The co-occurrence network revealed that there was a large difference in the bacterial relationship between the two groups. Linear discriminant effect analysis showed that Gammaproteobacteria, Bacilli, and Actinobacteria were the indicator taxa in the high nitrate concentration group. Overall, these results indicate that nitrate is a key factor to influence the nitrate reduction rates and related microbial communities in estuarine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Sequences of raw sequences and trimmed and filtered sequences can be found at figshare (https://doi.org/10.6084/m9.figshare.14605842). All other data are available from the supplementary tables.

References

  • An, S., and W.S. Gardner. 2002. Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Marine Ecology Progress Series 237: 41–50.

    Article  CAS  Google Scholar 

  • Bastian, M., S. Heymann, and M. Jacomy. 2009. Gephi: an open source software for exploring and manipulating networks. In Third international AAAI conference on weblogs and social media.

  • Berga, M., A.J. Székely, S. Langenheder, and C.P. Slomp. 2012. Effects of disturbance Intensity and frequency on bacterial community composition and function. PLoS ONE 7: e36959.

    Article  CAS  Google Scholar 

  • Bristow, L.A., C.M. Callbeck, M. Larsen, M.A. Altabet, J. Dekaezemacker, M. Forth, M. Gauns, R.N. Glud, M.M. Kuypers, and G. Lavik. 2017. N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone. Nature Geoscience 10: 24–29.

    Article  CAS  Google Scholar 

  • Brunet, R., and L. Garcia-Gil. 1996. Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiology Ecology 21: 131–138.

    Article  CAS  Google Scholar 

  • Burgin, A.J., and S.K. Hamilton. 2007. Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment 5: 89–96.

    Article  Google Scholar 

  • Canfield, D.E., A.N. Glazer, and P.G. Falkowski. 2010. The evolution and future of Earth’s nitrogen cycle. Science 330: 192–196.

    Article  CAS  Google Scholar 

  • Canion, A., W.A. Overholt, J.E. Kostka, M. Huettel, G. Lavik, and M.M. Kuypers. 2014. Temperature response of denitrification and anaerobic ammonium oxidation rates and microbial community structure in a rctic fjord sediments. Environmental Microbiology 16: 3331–3344.

    Article  CAS  Google Scholar 

  • Cao, S., R. Du, B. Li, N. Ren, and Y. Peng. 2016. High-throughput profiling of microbial community structures in an ANAMMOX-UASB reactor treating high-strength wastewater. Applied Microbiology and Biotechnology 100: 6457–6467.

    Article  CAS  Google Scholar 

  • Caporaso, J.G., C.L. Lauber, W.A. Walters, D. Berg-Lyons, C.A. Lozupone, P.J. Turnbaugh, and N, Fierer, and R. Knight. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences 108: 4516–4522.

    Article  CAS  Google Scholar 

  • Chen, C., F. Sun, H. Zhang, J. Wang, Y. Shen, and X. Liang. 2016. Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR). Bioresource Technology 216: 571–578.

    Article  CAS  Google Scholar 

  • Cheng, L., X. Li, X. Lin, L. Hou, M. Liu, Y. Li, S. Liu, and X. Hu. 2016. Dissimilatory nitrate reduction processes in sediments of urban river networks: Spatiotemporal variations and environmental implications. Environmental Pollution 219: 545–554.

    Article  CAS  Google Scholar 

  • Conley, D.J., H.W. Paerl, R.W. Howarth, D.F. Boesch, S.P. Seitzinger, K.E. Havens, C. Lancelot, and G.E. Likens. 2009. Controlling eutrophication: nitrogen and phosphorus. American Association for the Advancement of Science 5917: 1014–1015.

    Article  Google Scholar 

  • Crowe, S.A., D.E. Canfield, A. Mucci, B. Sundby, and R. Maranger. 2012. Anammox, denitrification and fixed-nitrogen removal in sediments from the Lower St. Lawrence Estuary. Biogeosciences 9.

  • Dalsgaard, T., D.E. Canfield, J. Petersen, B. Thamdrup, and J. Acuña-González. 2003. N 2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature 422: 606–608.

    Article  CAS  Google Scholar 

  • Deegan, L.A., D.S. Johnson, R.S. Warren, B.J. Peterson, J.W. Fleeger, S. Fagherazzi, and W.M. Wollheim. 2012. Coastal eutrophication as a driver of salt marsh loss. Nature 490: 388–392.

    Article  CAS  Google Scholar 

  • Deng, F., L. Hou, M. Liu, Y. Zheng, G. Yin, X. Li, X. Lin, F. Chen, J. Gao, and X. Jiang. 2015. Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary. Journal of Geophysical Research: Biogeosciences 120: 1521–1531.

    Article  CAS  Google Scholar 

  • Deng, W., Y. Wang, Z. Liu, H. Cheng, and Y. Xue. 2014. HemI: a toolkit for illustrating heatmaps. PloS one 9.

  • Dong, L., D. Thornton, D. Nedwell, and G. Underwood. 2000. Denitrification in sediments of the River Colne estuary, England. Marine ecology Progress Series 203: 109–122.

    Article  CAS  Google Scholar 

  • Dong, L.F., C.J. Smith, S. Papaspyrou, A. Stott, A.M. Osborn, and D.B. Nedwell. 2009. Changes in benthic denitrification, nitrate ammonification, and anammox process rates and nitrate and nitrite reductase gene abundances along an estuarine nutrient gradient (the Colne Estuary, United Kingdom). Applied and Environmental Microbiology 75: 3171–3179.

    Article  CAS  Google Scholar 

  • Dong, L.F., M.N. Sobey, C.J. Smith, I. Rusmana, W. Phillips, A. Stott, A.M. Osborn, and D.B. Nedwell. 2011. Dissimilatory reduction of nitrate to ammonium, not denitrification or anammox, dominates benthic nitrate reduction in tropical estuaries. Limnology and Oceanography 56: 279–291.

    Article  CAS  Google Scholar 

  • Didier, L.B., P. Hannes, and J.T. Lars. 2012. Resistance and resilience of microbial communities temporal and spatial insurance against perturbations. Environmental Microbiology 14: 2283–2292.

    Article  Google Scholar 

  • Dunn, R.J., D. Robertson, P.R. Teasdale, N.J. Waltham, and D.T. Welsh. 2013. Benthic metabolism and nitrogen dynamics in an urbanised tidal creek: Domination of DNRA over denitrification as a nitrate reduction pathway. Estuarine, Coastal and Shelf Science 131: 271–281.

    Article  CAS  Google Scholar 

  • Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461.

    Article  CAS  Google Scholar 

  • Edgar, R.C. 2016. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv: 081257.

  • Edgar, R.C. 2017. Accuracy of microbial community diversity estimated by closed-and open-reference OTUs. PeerJ 5: e3889.

    Article  Google Scholar 

  • Fernandes, S.O., V.D. Michotey, S. Guasco, P.C. Bonin, and P.L. Bharathi. 2012. Denitrification prevails over anammox in tropical mangrove sediments (Goa, India). Marine Environmental Research 74: 9–19.

    Article  CAS  Google Scholar 

  • Galloway, J.N., A.R. Townsend, J.W. Erisman, M. Bekunda, Z. Cai, J.R. Freney, L.A. Martinelli, S.P. Seitzinger, and M.A. Sutton. 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320: 889–892.

    Article  CAS  Google Scholar 

  • Giblin, A.E., C.R. Tobias, B. Song, N. Weston, G.T. Banta, and V.H. Rivera-Monroy. 2013. The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems. Oceanography 26: 124–131.

    Article  Google Scholar 

  • Gomez-Velez, J.D., J.W. Harvey, M.B. Cardenas, and B. Kiel. 2015. Denitrification in the Mississippi River network controlled by flow through river bedforms. Nature Geoscience 8: 941–945.

    Article  CAS  Google Scholar 

  • Hallin, S., and P.E. Lindgren. 1999. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Applied and Environmental Microbiology 65: 1652–1657.

    Article  CAS  Google Scholar 

  • Holtan-Hartwig, L., M. Bechmann, T.R. Hoyas, et al. 2002. Heavy metals tolerance of soil denitrifying communities: N2O dynamics. Soil Biology and Biochemistry 34: 1181–1190.

    Article  CAS  Google Scholar 

  • Hou, L., Y. Zheng, M. Liu, J. Gong, X. Zhang, G. Yin, and L. You. 2013. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. Journal of Geophysical Research: Biogeosciences 118: 1237–1246.

    Article  CAS  Google Scholar 

  • Howarth, R., F. Chan, D.J. Conley, J. Garnier, S.C. Doney, R. Marino, and G. Billen. 2011. Coupled biogeochemical cycles: eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment 9: 18–26.

    Article  Google Scholar 

  • Jiang, X.T., X. Peng, G.H. Deng, H.F. Sheng, Y. Wang, H.W. Zhou, and N.F.Y. Tam. 2013. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microbial Ecology 66: 96–104.

    Article  Google Scholar 

  • Juretschko, S., G. Timmermann, M. Schmid, K.H. Schleifer, A. Pommerening-Röser, H.P. Koops, and M. Wagner. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Applied and Environmental Microbiology 64: 3042–3051.

    Article  CAS  Google Scholar 

  • Kraft, B., H.E. Tegetmeyer, R. Sharma, M.G. Klotz, T.G. Ferdelman, R.L. Hettich, J.S. Geelhoed, and M. Strous. 2014. The environmental controls that govern the end product of bacterial nitrate respiration. Science 345: 676–679.

    Article  CAS  Google Scholar 

  • Laverman, A.M., R.W. Canavan, C.P. Slomp, and P. Van Cappellen. 2007. Potential nitrate removal in a coastal freshwater sediment (Haringvliet Lake, The Netherlands) and response to salinization. Water Research 41: 3061–3068.

    Article  CAS  Google Scholar 

  • Ligi, T., K. Oopkaup, M. Truu, J.-K. Preem, H. Nõlvak, W.J. Mitsch, Ü. Mander, and J. Truu. 2014. Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing. Ecological Engineering 72: 56–66.

    Article  Google Scholar 

  • Liu, Y.R., Y.M. Zheng, J.P. Shen, et al. 2010. Effects of mercury on the activity and community composition of soil ammonia oxidizers. Environmental Science and Pollution Research 17 (6): 1237–1244.

    Article  CAS  Google Scholar 

  • Luvizotto, D.M., J.E. Araujo, M.D.C.P. Silva, A.C. Dias, B. Kraft, H. Tegetmeye, M. Strous, and F.D. Andreote. 2019. The rates and players of denitrification, dissimilatory nitrate reduction to ammonia (DNRA) and anaerobic ammonia oxidation (anammox) in mangrove soils. Anais da Academia Brasileira de Ciências 91.

  • Ma, H., and C.M. Aelion. 2005. Ammonium production during microbial nitrate removal in soil microcosms from a developing marsh estuary. Soil Biology and Biochemistry 37: 1869–1878.

    Article  CAS  Google Scholar 

  • Murphy, A.E., I.C. Anderson, A.R. Smyth, B. Song, and M.W. Luckenbach. 2016. Microbial nitrogen processing in hard clam (Mercenaria mercenaria) aquaculture sediments: the relative importance of denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Limnology and Oceanography 61: 1589–1604.

    Article  Google Scholar 

  • Neef, A., R. Amann, H. Schlesner, and K.H. Schleifer. 1998. Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144: 3257–3266.

    Article  CAS  Google Scholar 

  • Ni, S.Q., J.Y. Ni, D.L. Hu, and S. Sung. 2012. Effect of organic matter on the performance of granular anammox process. Bioresource Technology 110: 701–705.

    Article  CAS  Google Scholar 

  • Oshiki, M., S. Ishii, K. Yoshida, N. Fujii, M. Ishiguro, H. Satoh, and S. Okabe. 2013. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (anammox) bacteria. Applied and Environmental Microbiology 79: 4087–4093.

    Article  CAS  Google Scholar 

  • Porubsky, W.P., L.E. Velasquez, and S.B. Joye. 2008. Nutrient-replete benthic microalgae as a source of dissolved organic carbon to coastal waters. Estuaries and Coasts 31: 860–876.

    Article  CAS  Google Scholar 

  • Purkhold, U., A. Pommerening-Röser, S. Juretschko, M.C. Schmid, H.-P. Koops, and M. Wagner. 2000. Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Applied and Environmental Microbiology. 66: 5368–5382.

    Article  CAS  Google Scholar 

  • Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, and P. Yarza. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41: D590–D596.

  • Reith, F., J. Brugger, C.M. Zammit, A.L. Gregg, K.C. Goldfarb, G.L. Andersen, T.Z. DeSantis, Y.M. Piceno, E.L. Brodie, and Z. Lu. 2012. Influence of geogenic factors on microbial communities in metallogenic Australian soils. The ISME Journal 6: 2107–2118.

    Article  CAS  Google Scholar 

  • Roberts, K.L., V.M. Eate, B.D. Eyre, D.P. Holland, and P.L. Cook. 2012. Hypoxic events stimulate nitrogen recycling in a shallow salt-wedge estuary: The Yarra River estuary, Australia. Limnology and Oceanography 57: 1427–1442.

    Article  CAS  Google Scholar 

  • Robertson, E.K., K.L. Roberts, L.D. Burdorf, P. Cook, and B. Thamdrup. 2016. Dissimilatory nitrate reduction to ammonium coupled to Fe (II) oxidation in sediments of a periodically hypoxic estuary. Limnology and Oceanography 61: 365–381.

    Article  Google Scholar 

  • Rütting, T., P. Boeckx, C. Müller, and L. Klemedtsson. 2011. Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8: 1779–1791.

    Article  Google Scholar 

  • Schloss, P.D., S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks, and C.J. Robinson. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology 75: 7537–7541.

    Article  CAS  Google Scholar 

  • Schmid, M., U. Twachtmann, M. Klein, M. Strous, S. Juretschko, M. Jetten, J.W. Metzger, K.H. Schleifer, and M. Wagner. 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Systematic and Applied Microbiology 23: 93–106.

    Article  CAS  Google Scholar 

  • Schmid M, K. Walsh,  R. Webb,  W.I. Rijpstra, K. van de Pas-Schoonen, M.J. Verbruggen, T. Hill, B. Moffett, J. Fuerst and S. Schouten. 2003. Candidatus “Scalindua brodae”, sp. nov, Candidatus “Scalindua wagneri”, sp. nov, two new species of anaerobic ammonium oxidizing bacteria. Systematic and Applied Microbiology 26: 529-538.

  • Segata, N., J. Izard, L. Waldron, D. Gevers, L. Miropolsky, W.S. Garrett, and C. Huttenhower. 2011. Metagenomic biomarker discovery and explanation. Genome Biology 12: R60.

    Article  Google Scholar 

  • Seitzinger, S. 2008. Out of reach. Nature 452: 162–163.

    Article  CAS  Google Scholar 

  • Shan, J., X. Zhao, R. Sheng, Y. Xia, C. Ti, X. Quan, S. Wang, W. Wei, and X. Yan. 2016. Dissimilatory nitrate reduction processes in typical Chinese paddy soils: rates, relative contributions, and influencing factors. Environmental Science & Technology 50: 9972–9980.

    Article  CAS  Google Scholar 

  • Takekawa, M., G. Park, S. Soda, and M. Ike. 2014. Simultaneous anammox and denitrification (SAD) process in sequencing batch reactors. Bioresource Technology 174: 159–166.

    Article  CAS  Google Scholar 

  • Teixeira, L.C., R.S. Peixoto, J.C. Cury, W.J. Sul, V.H. Pellizari, J. Tiedje, and A.S. Rosado. 2010. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. The ISMEJournal 4: 989–1001.

    Google Scholar 

  • Thamdrup, B., and T. Dalsgaard. 2002. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Applied and Environmental Microbiology. 68: 1312–1318.

    Article  CAS  Google Scholar 

  • Throbäck, I.N., K. Enwall, A. Jarvis, and S. Hallin. 2004. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Ecol. 49: 401–417.

    Article  Google Scholar 

  • Tobias, C.R., S.A. Macko, I.C. Anderson, E.A. Canuel, and J.W. Harvey. 2001. Tracking the fate of a high concentration groundwater nitrate plume through a fringing marsh: a combined groundwater tracer and in situ isotope enrichment study. Limnology and Oceanography 46: 1977–1989.

    Article  CAS  Google Scholar 

  • Ward, B., A. Devol, J. Rich, B. Chang, S. Bulow, H. Naik, A. Pratihary, and A. Jayakumar. 2009. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461: 78–81.

    Article  CAS  Google Scholar 

  • Wei, G., M. Li, F. Li, H. Li, and Z. Gao. 2016. Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River estuary. Applied Microbiology and Biotechnology 100: 9683–9697.

    Article  CAS  Google Scholar 

  • Wei, W., K. Isobe, T. Nishizawa, L. Zhu, Y. Shiratori, N. Ohte, K. Koba, S. Otsuka, and K. Senoo. 2015. Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. The ISME Journal 9: 1954–1965.

    Article  CAS  Google Scholar 

  • Welsh, A., J.C. Chee-Sanford, L.M. Connor, F.E. Löffler, and R.A. Sanford. 2014. Refined nrfA phylogeny improves PCR-based nrfA gene detection. Applied and Environmental Microbiology 80: 2110–2119.

  • Yang, A., X. Zhang, H. Agogué, C. Dupuy, and J. Gong. 2015. Contrasting spatiotemporal patterns and environmental drivers of diversity and community structure of ammonia oxidizers, denitrifiers, and anammox bacteria in sediments of estuarine tidal flats. Annals of Microbiology 65: 879–890.

    Article  CAS  Google Scholar 

  • Yin, G., L. Hou, M. Liu, X. Li, Y. Zheng, J. Gao, X. Jiang, R. Wang, C. Yu, and X. Lin. 2017. DNRA in intertidal sediments of the Yangtze Estuary. Journal of Geophysical Research: Biogeosciences 122: 1988–1998.

    Article  CAS  Google Scholar 

  • Yin, G., L. Hou, M. Liu, Z. Liu, and W.S. Gardner. 2014. A novel membrane inlet mass spectrometer method to measure 15NH4+ for isotope-enrichment experiments in aquatic ecosystems. Environmental Science & Technology 48: 9555–9562.

    Article  CAS  Google Scholar 

  • Yin, G., L. Hou, H. Zong, P. Ding, M. Liu, S. Zhang, X. Cheng, and J. Zhou. 2015. Denitrification and anaerobic ammonium oxidization across the sediment–water interface in the hypereutrophic ecosystem, Jinpu Bay, in the Northeastern Coast of China. Estuaries and Coasts 38: 211–219.

    Article  CAS  Google Scholar 

  • Wu, Y. B., Y.D. Li, X.J. Li, and Y.Q. Bian. 2007. The Study and Application on Bacteroides. Biotechnology Bulletin 1: 66.

Download references

Funding

This work was supported by the National Natural Science Foundation Project of China (No. U1906223, 42007208), Shandong Provincial Natural Science Foundation, China (No. ZR2018MD001, ZR2020QD084), COMRA project (No. DY135-B2-17), Funds of the Shandong “Double Tops” Program, and Open Research Fund of State Key Laboratory of Estuarine and Coastal Research (No. SKLEC-KF201603).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lijun Hou or Zheng Gao.

Additional information

Communicated by Bongkeun Song

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wei, G., Liu, J. et al. Effects of Nitrate Exposure on Nitrate Reduction Processes in the Wetland Sediments from the Yellow River Estuary. Estuaries and Coasts 45, 315–330 (2022). https://doi.org/10.1007/s12237-021-00966-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-021-00966-7

Keywords

Navigation