Skip to main content

Advertisement

Log in

Herbivory in Seagrass Meadows: an Evolving Paradigm

  • Special Issue: Seagrasses Tribute to Susan Williams
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

In the past few decades, we have learned much about the factors that regulate the productivity of seagrass-dominated ecosystems, especially those at low latitudes. Here, we update our previous assessments of the importance of seagrass-herbivore interactions, focusing on recent studies that have examined (1) the diversity of herbivores feeding on live seagrass leaves; (2) the factors that determine the ability of seagrasses to respond to herbivore damage; (3) how potential chemical deterrents, and structural defenses, in seagrass leaves influence herbivore consumption; (4) how climate-driven changes in herbivore identity might change grazing intensity in temperate seagrasses; (5) the effects of herbivory on pollen, flowers, fruits, and seeds of seagrasses; and (6) the effects of human removal of seagrass megaherbivores and the top-down effects of overfishing top predators on seagrass consumption. We also identify important gaps in our understanding of the broadly defined topic of herbivory in seagrass-dominated ecosystems. Specifically, we suggest that future studies should consider focusing on increasing our understanding of herbivore foraging strategies, quantifying the impact of herbivory on seagrass reproductive biology, including effects on the fates of flowers, fruits, and seeds and documenting the commonness of compensatory responses and chemical defenses to grazing. Studies of the roles of the nutritional content (as measured by C/N/P ratios), in determining herbivore feeding preferences, remain fertile grounds for future studies, as do additional experiments to quantify the relative roles of top-down and bottom-up factors in determining seagrass abundance and energy fluxes in seagrass meadows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agostini, S., J.M. Desjobert, and G. Pergent. 1998. Distribution of phenolic compounds in the seagrass Posidonia oceanica. Phytochemistry 48 (4): 611–617.

    CAS  Google Scholar 

  • Ahasan, M., Waltzek, T.B., Luerlimamm, R. and Ariel, E. (2017) Fecal bacterial communities of wild-captured and stranded green turtles (Chelonia mydas) on the Great Barrier Reef. FEMS Microbiology Ecology 93: https://doi.org/10.1093/femsec/fix139.

  • Alcoverro, T., and S. Mariani. 2004. Patterns of fish and sea urchin grazing on tropical Indo-Pacific seagrass beds. Ecography 27 (3): 361–365.

    Google Scholar 

  • Armitage, A.R., and J.W. Fourqurean. 2006. The short-term influence of herbivory near patch reefs varies between seagrass species. Journal of Experimental Marine Biology and Ecology 339 (1): 65–74.

    Google Scholar 

  • Arnold, T.M., C.E. Tanner, M. Rothen, and J. Bullington. 2008. Wound-induced accumulations of condensed tannins in turtlegrass, Thalassia testudinum. Aquatic Botany 89 (1): 27–33.

    CAS  Google Scholar 

  • Athey, L.A., and E.F. Connor. 1989. The relationship between foliar nitrogen content and feeding by Odonta dorsalis Thun. on Robinia pseudoacacia (L.). Oecologia 79 (3): 390–394.

    CAS  Google Scholar 

  • Atwood, T.B., R.M. Connolly, E.G. Ritchie, C.E. Lovelock, M.R. Heithaus, G.C. Hays, J.W. Fourqurean, and P.I. Macreadie. 2015. Predators help protect carbon stocks in blue carbon ecosystems. Nature Climate Change 5 (12): 1038–1045.

    Google Scholar 

  • Augner, M. 1995. Low nutritive quality as a plant defense: Effects of herbivore-mediated interactions. Evolutionary Ecology 9: 1–12.

    Google Scholar 

  • Avens, L., L. Goshe, C. Harms, E. Anderson, A.G. Hall, W. Cluse, M. Godfrey, J. Braun-McNeill, B. Stacy, R. Bailey, and M. Lamont. 2012. Population characteristics, age structure, and growth dynamics of neritic juvenile green turtles in the northeastern Gulf of Mexico. Marine Ecology Progress Series 458: 213–229.

    Google Scholar 

  • Bakker, E.E., K.A. Wood, J.F. Pagès, G.F. Veen, M.J.A. Christianen, L. Santamaría, B.A. Nolet, and S. Hilt. 2016. Herbivory on freshwater and marine macrophytes: A review and perspective. Aquatic Botany 135: 18–36.

    Google Scholar 

  • Balestri, E., and F. Cinelli. 2003. Sexual reproductive success in Posidonia oceanica. Aquatic Botany 75 (1): 21–32.

    Google Scholar 

  • Balsby, T.J.S., P. Clausen, D. Krause-Jensen, J. Carstensen, and J. Madsen. 2017. Long-term patterns of eelgrass (Zostera marina) occurrence and associated herbivorous waterbirds in a Danish coastal inlet. Frontiers in Marine Science 3: 1–14.

    Google Scholar 

  • Behmer, S.T. 2009. Insect herbivore nutrient regulation. Annual Review of Entomology 54 (1): 165–187.

    CAS  Google Scholar 

  • Bessey, C., M.R. Heithaus, J.W. Fourqurean, K.R. Gastrich, and D.A. Burkholder. 2016. Importance of teleost macrograzers to seagrass composition in a subtropical ecosystem with abundant populations of megagrazers and predators. Marine Ecology Progress Series 553: 81–92.

    Google Scholar 

  • Best, R.J., and J.J. Stachowicz. 2012. Trophic cascades in seagrass meadows depend on mesograzer variation in feeding rates, predation susceptibility, and abundance. Marine Ecology Progress Series 456: 29–42. https://doi.org/10.3354/meps09678.

    Article  Google Scholar 

  • Bjorndal, K.A. 1979. Cellulose digestion and volatile fatty acid production in the green turtle, Chelonia mydas. Comparative Biochemistry and Physiology 63 (a): 127–133.

    Google Scholar 

  • Bonebrake, T.C., C.J. Brown, J.D. Bell, J.L. Blanchard, A. Chauvenet, C. Champion, I.-C. Chen, T.D. Clark, R.K. Colwell, F. Danielsen, A.I. Dell, J.M. Donelson, B. Evengård, S. Ferrier, S.T. Frusher, R.A. Garcia, R.B. Griffis, A.J. Hobday, M.A. Jarzyna, E. Lee, J. Lenoir, H. Linnetved, V.Y. Martin, P.C. McCormack, J. McDonald, E. McDonald-Madden, N. Mitchell, T. Mustonen, J.M. Pandolfi, N. Pettorelli, H. Possingham, P. Pulsifer, M. Reynolds, B.R. Scheffers, C. Sorte, J.M. Strugnell, M.-N. Tuanmu, S. Twiname, A. Vergés, C. Villanueva, E. Wapstra, T. Wernberg, and G. Pecl. 2018. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation, and social science. Biological Review 93: 281–305.

    Google Scholar 

  • Boyd, C.E., and C.P. Goodyear. 1971. Nutritive quality of food in ecological systems. Archives of Hydrobiology 69: 256–270.

    Google Scholar 

  • Brearly, A., and D.I. Walker. 1995. Isopod miners in the leaves of two Western Australian Posidonia. Aquatic Botany 52 (3): 163–181.

    Google Scholar 

  • Brearly, D., G.A. Kendrick, and D.I. Walker. 2008. How does burrowing by the isopod Limnoria agrostisa (Crustacea: Limoniidae) affect the leaf canopy of the southern Australian seagrass Amphibolis griffithii? Marine Biology 156 (1): 65–77.

    Google Scholar 

  • Bryant, J.P., F.S. Chapin, and D.R. Klein. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40 (3): 357–368.

    CAS  Google Scholar 

  • Burkholder, D.A., M.R. Heithaus, J.W. Fourqurean, A. Wirsing, and L.M. Dill. 2013. Patterns of top-down control in a seagrass ecosystem: Could a roving apex predator induce behaviour-mediated trophic cascade? Journal of Animal Ecology 82 (6): 1192–1202.

    Google Scholar 

  • Cárdenas, R.E., R. Valencia, N.J. Kraft, A. Argoti, and O. Dangles. 2014. Plant traits predict inter- and intraspecific variation in susceptibility to herbivory in a hyperdiverse Neotropical rain forest tree community. Journal of Ecology 102 (4): 939–952. https://doi.org/10.1111/1365-2745.12255.

    Article  Google Scholar 

  • Cargill, S.M., and R.L. Jefferies. 1984. Nutrient limitations of primary production in a sub-arctic salt marsh. Journal of Applied Ecology 21 (2): 657–660.

    Google Scholar 

  • Carnell, P.E., D. Ierodiaconou, T.B. Atwood, and P.I. Macreadie. 2020. Overgrazing of seagrass by sea urchins diminishes blue carbon stocks. Ecosystems. https://doi.org/10.1007/s10021-020-00479-7.

  • Carr, L.A., and K.E. Boyer. 2014. Variation at multiple trophic levels mediates a novel seagrass-grazer interaction. Marine Ecology Progress Series 508: 117–128. https://doi.org/10.3354/meps10855.

    Article  Google Scholar 

  • Christianen, M.J.A., P.M.J. Herman, T.J. Bouma, L.P.M. Lamers, M.M. Van Katwijk, T. Van Der Heide, P.J. Mumby, B.R. Silliman, S.I. Engelhard, M. Van De Kerk, W. Kiswara, and J. Van De Koppel. 2014. Habitat collapse due to overgrazing threatens turtle conservation in marine protected areas. Proceedings of the Royal Society B: Biological Sciences 281 (1777): 20133011. https://doi.org/10.1098/rspb.2013.2890.

    Article  Google Scholar 

  • Clancy, K.M., and P.P. Fenny. 1987. Rapid herbivore growth enhances enemy attack: Sublethal defenses remain a paradox. Ecology 68 (3): 733–737.

    Google Scholar 

  • Coley, P.D. 1980. Effects of leaf age and plant life history patterns on herbivory. Nature 284 (5756): 545–546.

    Google Scholar 

  • Coley, P.D. 1983. Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecological Monographs 53 (2): 209–233.

    Google Scholar 

  • Coley, P.D., and J.A. Barone. 1996. Herbivory and plant defenses in tropical rain forests. Annual Review of Ecology and Systematics 27 (1): 305–335.

    Google Scholar 

  • Creed, J.C. 2004. Capybara (Hydrochaeris hydrochaeris Rodentia: Hydrochaeridae): A mammalian seagrass herbivore. Estuaries 27 (2): 197–200.

    Google Scholar 

  • Dahl, M., D. Deyanova, L.D. Lyimo, J. Nȁslund, G.S. Samuelsson, M.S.P. Mtolera, M. Bjőrk, and M. Gullstrőm. 2016. Effects of shading and simulated grazing on carbon sequestration in a tropical seagrass meadow. Journal of Ecology 104 (3): 654–664.

    CAS  Google Scholar 

  • Darnell, K.M., and K.L. Heck. 2013. Species-specific effects of prior grazing on the palatability of turtlegrass. Journal of Experimental Marine Biology and Ecology 440: 225–232.

    Google Scholar 

  • Day, R.D., D.P. German, J.M. Manjakasy, I. Farr, J. Hansen, and I.R. Tibbetts. 2011. Enzymatic digestion in stomachless fishes: How a simple gut accommodates both herbivory and carnivory. Journal of Comparative Physiology B 181 (5): 603–613. https://doi.org/10.1007/s00360-010-0546-y.

    Article  CAS  Google Scholar 

  • de los Santos, C.B., F.G. Brun, Y. Onoda, M.L. Cambridge, T.J. Bouma, J.J. Vergara, and J.L. Pérez-Lloréns. 2012. Leaf-fracture properties correlated with nutritional traits in nine Australian seagrass species: Implications for susceptibility to herbivory. Marine Ecology Progress Series 458: 89–102. https://doi.org/10.3354/meps09757.

    Article  CAS  Google Scholar 

  • Duffy, J.E. 2003. Biodiversity loss, trophic skew and ecosystem functioning. Ecology Letters 6 (8): 680–687.

    Google Scholar 

  • Eklöf, J.S., M. de la Torre-Castro, M. Gullstrom, J. Uku, N. Muthiga, T. Lyimo, and S.O. Bandeira. 2008. Sea urchin overgrazing of seagrasses: A review of current knowledge on causes, consequences, and management. Estuarine, Coastal and Shelf Science 79 (4): 569–580.

    Google Scholar 

  • Feeny, P. 1970. Seasonal changes in the oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51 (4): 565–581.

    Google Scholar 

  • Foley, A., K. Singel, P. Dutton, T. Summers, A. Redlow, and J. Lessman. 2007. Characteristics of a green turtle (Chelonia mydas) assemblage in northwestern Florida determined during a hypothermic stunning event. Gulf of Mexico Science 25: 131–143.

    Google Scholar 

  • Fong, J.M., S. Lai, S.M. Yaakub, Y.X. Ow, and P.A. Todd. 2018. The diet and feeding rates of gastropod grazers in Singapore's seagrass meadows. Botanica Marina 61 (3): 181–192.

    Google Scholar 

  • Fourqurean, J.W., and J.C. Zieman. 2002. Nutrient content of the seagrass Thalassia testudinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys, USA. Biogeochemistry 61 (3): 229–245. https://doi.org/10.1023/A:1020293503405.

    Article  CAS  Google Scholar 

  • Fourqurean, J.W., S.A. Manuel, K.A. Coates, W.J. Kenworthy, and S.R. Smith. 2010. Effects of excluding sea turtle herbivores from a seagrass bed: Overgrazing may have led to loss of seagrass meadows in Bermuda. Marine Ecology Progress Series 419: 223–232.

    Google Scholar 

  • Fourqurean, J.W., S.A. Manuel, K.A. Coates, S.C. Massey, and W.J. Kenworthy. 2019. Decadal monitoring in Bermuda shows a widespread loss of seagrasses attributable to overgrazing by the geen sea turtle Chelonia mydas. Estuaries and Coasts 42 (6): 1524–1540. https://doi.org/10.1007/s12237-019-00587-1/.

    Article  CAS  Google Scholar 

  • Gambi, M.C., B. van Tussenbroek, and A. Brearly. 2003. Mesofaunal borers in seagrasses: World-wide occurrence and a new record of boring polychaetes in the Mexican Caribbean. Aquatic Botany 76 (1): 65–77.

    Google Scholar 

  • Goecker, M.E., K.L. Heck Jr., and J.F. Valentine. 2005. Effects of nitrogen content in turtlegrass, Thalassia testudinum, on consumption by the bucktooth parrotfish. Sparisoma radians. Marine Ecology Progress Series. 286: 239–248.

    Google Scholar 

  • Grignon-Dubois, M., B. Rezzonico, and T. Alcoverro. 2012. Regional scale patterns in seagrass defences: Phenolic acid content in Zostera noltii. Estuarine, Coastal and Shelf Science 114: 18–22.

    CAS  Google Scholar 

  • Halpern, B.S. 2003. The impact of marine reserves: Do reserves work and does reserve size matter? Ecological Applications 13: S117–S137.

    Google Scholar 

  • Halpern, B.S., and R.R. Warner. 2002. Marine reserves have rapid and lasting effects. Ecology Letters 5 (3): 5: 361–5: 366. https://doi.org/10.1046/j.1461-0248.2002.00326.x.

    Article  Google Scholar 

  • Hamdy, A.A., W.S. Mettwally, M.A. El-Fotouh, B. Rodriquez, A.L. El-Dewany, S.A. El-Toumy, and A.A. Hussein. 2012. Bioactive phenolic compounds isolated from Egyptian’s Red Sea seagrass Thalassodendron ciliatum. Zeitschrift fur naturforschung C.J. Bioscience 67: 291–296.

    CAS  Google Scholar 

  • Harrison, P.G. 1989. Detrital processing in seagrass systems: A review of factors affecting decay rates, remineralization and detritivory. Aquatic Botany 23: 263–288.

    Google Scholar 

  • Hay, M.E. 1981. Spatial patterns of grazing intensity on a Caribbean barrier reef: Herbivory and algal distribution. Aquatic Botany 11: 97–109.

    Google Scholar 

  • Hay, M.E. 1984a. Patterns of fish and sea urchin grazing on Caribbean coral reefs: Are previous results typical? Ecology 65 (2): 446–454.

    Google Scholar 

  • Hay, M.E. 1984b. Predictable spatial escapes from herbivory: How do these affect the evolution of herbivore resistance in tropical marine communities. Oecologia 64 (3): 396–407.

    Google Scholar 

  • Heck, K.L., and J.F. Valentine. 1995. Sea urchin herbivory: Evidence for long-lasting effects in subtropical seagrass meadows. Journal of Experimental Marine Biology and Ecology 189 (1-2): 205–217.

    Google Scholar 

  • Heck, K.L., and J.F. Valentine. 2006. Plant-herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology 330 (1): 420–436.

    Google Scholar 

  • Heck, K.L., and J.F. Valentine. 2007. The primacy of top-down effects in shallow benthic ecosystems. Estuaries and Coasts 30 (3): 371–381. https://doi.org/10.1007/BF02819384.

    Article  Google Scholar 

  • Heck, K.L., G. Hays, and R.J. Orth. 2003. Critical evaluation of the nursery hypothesis for seagrasses. Marine Ecology Progress Series 253: 123–136.

    Google Scholar 

  • Heck, K.L., T.J.B. Carruthers, C.M. Duarte, A.R. Hughes, G. Kendrick, R.J. Orth, and S.W. Williams. 2008. Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. Ecosystems 11 (7): 1198–1210.

    Google Scholar 

  • Heck, K.L., F.J. Fodrie, S. Madsen, C.J. Baillie, and D.A. Byron. 2015. Seagrass consumption by native and a tropically associated fish species: Potential impacts of the tropicalization of the northern Gulf of Mexico. Marine Ecology Progress Series 520: 165–173.

    Google Scholar 

  • Heglmeier, A., and C. Zidon. 2010. Secondary metabolites of Posidonia oceanica (Posidoniaceae). Biochemical Systematics and Ecology 38 (5): 964–970.

    CAS  Google Scholar 

  • Heithaus, M.R., T. Alcoverro, R. Arthur, D.A. Burkholder, K.A. Coates, M.J.A. Christianen, N. Kelkar, S.A. Manuel, A.J. Wirsing, W.J. Kenworthy, and J.W. Fourqurean. 2014. Seagrasses in the age of sea turtle conservation and shark overfishing. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2014.00028.

  • Hemminga, M., and C. Duarte. 2000. Seagrass ecology. London: Cambridge University Press.

    Google Scholar 

  • Holbrook, S.J., D. Reed, K. Hansen, and C.A. Blanchette. 2000. Spatial and temporal patterns of predation on seeds of the surfgrass Phyllospadix torreyi. Marine Biology 136 (4): 739–747.

    Google Scholar 

  • Holzer, K.K., J.L. Rueda, and K.J. McGlathery. 2011a. Differences in the feeding ecology of two seagrass-associated snails. Estuaries and Coasts 34 (6): 1140–1149. https://doi.org/10.1007/s12237-011-9406-6.

    Article  Google Scholar 

  • Holzer, K.K., J.L. Rueda, and K.J. McGlathery. 2011b. Caribbean seagrasses as a food source for the emerald Neritid Smaragdia viridis. American Malacological Bulletin 29 (1/2): 63–67. https://doi.org/10.4003/006.029.0219.

    Article  Google Scholar 

  • Holzer, K.K., D.A. Seekell, and K.J. McGlathery. 2013. Bucktooth parrotfish Sparisoma radians grazing on Thalassia in Bermuda varies seasonally and with background nitrogen content. Journal of Experimental Marine Biology and Ecology 443: 27–32.

    Google Scholar 

  • Hyndes, G.A., K.L. Heck, A. Vergés, E.S. Harvey, G.A. Kendrick, P.S. Lavery, K. McMahon, R.J. Orth, A. Pearce, M. Vanderklift, T. Wernberg, S. Whiting, and S. Wilson. 2016. Accelerating tropicalization and the transformation of temperate seagrass meadows. BioScience 66 (11): 938–948. https://doi.org/10.1093/biosci/biw111.

    Article  Google Scholar 

  • Jackson, R.V. 1996. A new technique for accessing tree canopies to measure insect Herbivory. Australian Journal of Entomology 35 (1): 93–95.

    Google Scholar 

  • Jackson, J.B.C., M.X. Kirby, W.H. Berger, K.A. Bjorndal, L.W. Botsford, and B.J. Bourque. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293 (5530): 629–638.

    CAS  Google Scholar 

  • Jiménez-Ramos, R., L.G. Egea, M.J. Ortega, I. Hernández, J.J. Vergara, and F.G. Brun. 2017. Global and local disturbances interact to modify seagrass palatability. PLoS One 12 (8): e0183256.

    Google Scholar 

  • Jiménez-Ramos, R., L.G. Egea, J.J. Vergara, and F.G. Brun. 2018. Nutrient load and epiphytes are drivers of increased herbivory in seagrass communities. Marine Ecology Progress Series 599: 49–64.

    Google Scholar 

  • Johansen, L., A. Westin, S. Wehn, A. Luga, C.M. Ivascu, E. Kallioniemi, and T. Lennartsson. 2019. Traditional semi-natural grassland management with heterogeneous mowing times enhances flower resources for pollinators in agricultural landscapes. Global Ecology and Conservation. https://doi.org/10.1016/j.gecco.2019.e00619.

  • Kantrud, H.A. 1991. Widgeon grass (Ruppia maritima): A literature review. U.S. Fish & Wildlife Service, Fish & Wildlife Research 10: 58.

    Google Scholar 

  • Karban, R., and I.T. Baldwin. 1997. Induced responses to herbivory. Chicago: The Chicago Press.

    Google Scholar 

  • Kelkar, N., R. Arthur, N. Marbà, and T. Alcoverro. 2013a. Green turtle herbivory dominates the fate of seagrass primary production in the Lakshadweep islands (Indian Ocean). Marine Ecology Progress Series 485: 235–243.

    Google Scholar 

  • Kelkar, N., R. Arthur, N. Marbà, and T. Alcoverro. 2013b. Greener pastures? High-density feeding aggregations of green turtles precipitate species shifts in seagrass meadows. Journal of Ecology 101 (5): 1158–1168.

    Google Scholar 

  • Kendrick, G.A., M. Waycott, T.J.B. Carruthers, M.L. Cambridge, R. Hovey, S.L. Krauss, P.S. Lavery, D.H. Les, R.J. Lowe, O. Mascaró i Vidal, J.L.S. Ooi, R.J. Orth, D.O. Rivers, L. Ruiz-Montoya, E.A. Sinclair, J. Statton, J. Kornelis van Dijk, and J.J. Verduin. 2012. The central role of dispersal in the maintenance and persistence of seagrass populations. BioScience 62 (1): 56–65. https://doi.org/10.1525/bio.2012.62.1.10.

    Article  Google Scholar 

  • Kirsch, K.D., J.F. Valentine, and K.L. Heck. 2002. Parrotfish grazing on turtlegrass (Thalassia testudinum): Evidence for the importance of seagrass consumption in food web dynamics of the Florida Keys National Marine Sanctuary. Marine Ecology Progress Series 227: 71–85.

    Google Scholar 

  • Klumpp, D.W., and P.D. Nichols. 1983a. Nutrition of the southern sea garfish Hyporhamphus melanochir gut passage rate and daily consumption of two food types and assimilation of seagrass components. Marine Ecology Progress Series 12: 209–216.

    Google Scholar 

  • Klumpp, D.W., and P.D. Nichols. 1983b. A study of food chains in seagrass communities. 2. Food of the rock flathead Platycephalus laevigatus Cuvier, a major predator in a Posidonia australis seagrass bed. Australian Journal of Marine & Freshwater Research 34 (5): 745–754.

    Google Scholar 

  • Klumpp, D.W., and A. Van der Walk. 1984. Nutritional quality of seagrasses Posidonia oceanica and Heterozostera tasmanica: Comparisons between species and stages of decomposition. Marine Biology Letters 5: 67–83.

    CAS  Google Scholar 

  • Lal, A.R., N. Marbà, A. Lill, and T. Alcoverro. 2010. Implications of conserving an ecosystem modifier: Increasing green turtle (Chelonia mydas) densities substantially alters seagrass meadows. Biological Conservation 143 (11): 2730–2738.

    Google Scholar 

  • Lamont, M.M., I. Fujisaki, B.S. Stephens, and C. Hackett. 2015. Home range and habitat use of juvenile green turtles (Chelonia mydas) in the northern Gulf of Mexico. Animal Biotelemetry 3 (1): 53. https://doi.org/10.1186/s40317-015-0089-9.

    Article  Google Scholar 

  • Lares, M.T., and J.B. McClintock. 1991. The effects of food quality and temperature on the nutrition of the carnivorous sea urchin Eucidaris tribuloides (Lamarck). Journal of Experimental Marine Biology and Ecology 149 (2): 279–286.

    Google Scholar 

  • Lefcheck, J.S., B.B. Hughes, A.J. Johnson, B.W. Pfirrmann, D.B. Rasher, A.R. Smyth, B.L. Williams, M.W. Beck, and R.J. Orth. 2018. Are coastal habitats important nurseries? Conservation Letters. https://doi.org/10.1111/conl.12645.

  • Leigh, S.C., Y.P. Papastamatiou, and D.P. German. 2018. Seagrass digestion by a notorious ‘carnivore’. Proceedings of the Royal Society B 285285 (1886): 20181583. https://doi.org/10.6084/m9.figshare.c.4203113.v1.

    Article  Google Scholar 

  • Lennartsson, T., S. Ramula, and J. Tuomi. 2017. Growing competitive or tolerant? Significance of apical dominance in the overcompensating herb Gentianella campestris. Ecology 99: 259–269.

    Google Scholar 

  • Lewis, S.M. 1985. Herbivory on coral reefs: Algal susceptibility to herbivorous fishes. Oecologia. 65 (3): 370–375. https://doi.org/10.1007/BF00378911.

    Article  Google Scholar 

  • Lobel, P.S. 1981. Trophic biology of herbivorous reef fishes: Alimentary pH and digestive capabilities. Journal of Fish Biology 19 (4): 365–397.

    Google Scholar 

  • Lodge, D.M. 1991. Herbivory on freshwater macrophytes. Aquatic Botany 41 (1-3): 195–224.

    Google Scholar 

  • Lowman, M.D. 1984. An assessment of techniques for measuring herbivory: Is rain forest defoliation more intense than we thought? Biotropica 16 (4): 264–268.

    Google Scholar 

  • Lowman, M.D. (1985) Insect Herbivory in Australian rain forests—Is it higher than in the neotropics? p. 109–121, in: ESA symposium proceedings: Are Australian ecosystems different? Volume 14.

  • Lowman, M.D. 1992. Herbivory in Australian rain forests, with particular reference to the canopies of Doryphora sassafras (Monimiaceae). Biotropica 24 (2): 263–272. https://doi.org/10.2307/2388521.

    Article  Google Scholar 

  • Luczkovich, J.J., and E.J. Stellwag. 1993. Isolation of cellulolytic microbes from the intestinal tract of the pinfish, Lagodon rhomboides: Size-related changes in diet and microbial abundance. Marine Biology 116 (3): 381–388.

    Google Scholar 

  • MacIntyre, I.G., R.R. Graus, P.N. Reinthal, M.M. Littler, and D.S. Littler. 1987. The barrier reef sediment apron: Tobacco Reef, Belize. Coral Reefs 6 (1): 1–12.

    Google Scholar 

  • Marbà, N., M.A. Hemminga, and C.M. Duarte. 2006. Resource translocation within seagrass clones: Allometric scaling to plant size and productivity. Oecologia 150 (3): 362–372. https://doi.org/10.1007/s00442-006-0524-y.

    Article  Google Scholar 

  • Marco-Méndez, C., P. Prado, K.L. Heck Jr., J. Cebrian, and J.L. Sanchez-Lizaso. 2012. Epiphytes mediate the trophic role of sea urchins in Thalassia testudinum seagrass beds. Marine Ecology Progress Series 460: 91–100.

    Google Scholar 

  • Marco-Méndez, C., L.M. Ferrero-Vicente, P. Prado, and J.L. Sánchez-Lizaso. 2017. Epiphytes and nutrient contents influence Sarpa salpa herbivory on Caulerpa spp vs. seagrass species in Mediterranean meadows. Estuarine. Coastal and Shelf Science 184: 54–66.

    Google Scholar 

  • Mariani, S., and T. Alcoverro. 1999. A multiple-choice feeding preference experiment utilizing seagrasses with a natural population of herbivorous fishes. Marine Ecology Progress Series 189: 295–299.

    Google Scholar 

  • Maron, J.L., and E. Crone. 2006. Herbivory: Effects on plant abundance, distribution and population growth. Proceedings of the Royal Society B 273 (1601): 2575–2584. https://doi.org/10.1098/rspb.2006.3587.

    Article  Google Scholar 

  • Martínez-Crego, B., P. Arteaga, F. Tomas, and R. Santos. 2016. The role of seagrass traits in mediating Zostera noltei vulnerability to mesograzers. PLoS One 11 (6): e0156848. https://doi.org/10.1371/journal.pone.0156848.

    Article  CAS  Google Scholar 

  • Massad, T.J. 2013. Ontogenetic differences of herbivory on woody and herbaceous plants: A meta-analysis demonstrating unique effects of herbivory on the young and the old, the slow and the fast. Oecologia 172 (1): 1–10. https://doi.org/10.1007/s00442-012-2470-1.

    Article  Google Scholar 

  • Mateo, M.A., J. Cebrián, K. Dunton, and T. Mutchler. 2006. Carbon flux in seagrass ecosystems. In Seagrasses: Biology, ecology and conservation, ed. A.W.D. Larkum, R.J. Orth, and C.M. Duarte, 159–192. Dordrecht: Springer.

    Google Scholar 

  • Mattila, J.M., M. Zimmer, O. Vesakoski, and V. Jormalainen. 2014. Habitat-specific gut microbiota of the marine herbivore Idotea balthica (isopoda). Journal of Experimental Marine Biology and Ecology 455: 22–28.

    Google Scholar 

  • Mattson, W.J. 1980. Herbivory in relation to plant nitrogen. Annual Review of Ecology and Systematics 11 (1): 119–161.

    Google Scholar 

  • McCauley, D.J., M.L. Pinsky, S.R. Palumbi, J.A. Estes, F.H. Joycem, and R.R. Warner. 2015. Marine defaunation: Animal loss in the global ocean. Science 347 (6219): 1255641.

    Google Scholar 

  • McClanahan, T.R., N.A.J. Graham, J.M. Calnan, and M.A. MacNeil. 2007. Toward pristine biomass: Reef fish recovery in coral reef marine protected areas in Kenya. Ecological Applications 17 (4): 1055–1067. https://doi.org/10.1890/06-1450.

    Article  Google Scholar 

  • McDevitt-Irwin, J.M., J.C. Iacarella, and J.K. Baum. 2016. Reassessing the nursery role of seagrass habitats from temperate to tropical regions: A meta-analysis. Marine Ecology Progress Series 557: 133–143.

    Google Scholar 

  • McMillan, C. 1983. Sulfated flavonoids and leaf morphology of the Halophila ovalis—H. minor complex (Hydrocharitaceae) in the Pacific Islands and Australia. Aquatic Botany 16 (4): 337–347.

    CAS  Google Scholar 

  • McMillan, C., O. Zapata, and L. Escobar. 1980. Sulfated phenolic compounds in seagrasses. Aquatic Botany 8: 267–278.

    CAS  Google Scholar 

  • McNaughton, S.J. 1979. Grazing as an optimization process: Grass: Ungulate relationships in the Serengeti. American Naturalist 113 (5): 691–703.

    Google Scholar 

  • McNeill, S. and T. R. E. Southwood (1978) The role of nitrogen in the development of insect/ plant relationships, p. 78-89, In: J. Harborne (ed.), Biogeochemical aspects of plant and animal coevolution. Proceedings of Phytochemical Society Symposium.

  • McRoy, C.P., and C. Helfferich. 1977. Seagrass ecosystems: A scientific perspective, 314 p. New York: Marcel Dekker, Inc..

    Google Scholar 

  • Molina-Hernández, A., and B. van Tussenbroek. 2014. Patch dynamics and species shifts in seagrass communities under moderate and high grazing pressure by green sea turtles. Marine Ecology Progress Series 517: 143–157.

    Google Scholar 

  • Montgomery, J.L.M., and T.E. Targett. 1992. The nutritional role of seagrass in the diet of the omnivorous pinfish Lagodon rhomboides. Journal of Experimental Marine Biology and Ecology 158 (1): 37–57.

    Google Scholar 

  • Moran, N., and W.D. Hamilton. 1980. Low nutritive quality as defense against herbivores. Journal of Theoretical Biology 86 (2): 247–254.

    Google Scholar 

  • Mumby, P.J. 2006. The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. Ecological Applications 16 (2): 747–769.

    Google Scholar 

  • Myers, R.A., and B. Worm. 2003. Rapid worldwide depletion of predatory fish communities. Nature 423: 280–283.

    CAS  Google Scholar 

  • Nagelkerken, I., S.U. Goldenberg, C.M. Ferreira, H. Ullah, and S.D. Connell. 2020. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 369 (6505): 829–832.

    CAS  Google Scholar 

  • Nakaoka, M. 2002. Predation on seeds of seagrasses Zostera marina and Zostera caulescens by a tanaid crustacean Zeuxo sp. Aquatic Botany 72 (2): 99–106.

    Google Scholar 

  • Nowicki, R.J., J.W. Fourqurean, and M.R. Heithaus (2018) The role of consumers in structuring seagrass communities: direct and indirect measures. pp: 491–540, In: Seagrasses of Australia, A.W.D. Larkum et al. (eds.) Seagrasses of Australia.

  • Ogden, J.C. (1980) Faunal relationships in Caribbean seagrass beds, pp.: 173-198. In: R. C. Phillips and C. P. McRoy (eds.), Handbook of seagrass biology. An Ecosystem Perspective. Garland STPM Press, New York.

  • Ogden, J.C., and N.B. Ogden. 1982. A preliminary study of two representative seagrass communities in Palau, Western Caroline Islands (Micronesia). Aquatic Botany 12: 229–244.

    Google Scholar 

  • Ogden, J.C., and J.C. Zieman. 1977. Ecological aspects of coral reef-seagrass bed contacts in the Caribbean. Proceedings of the 3rd International Coral Reef Symposium 1: 377–382.

    Google Scholar 

  • Orth, R.J., T.J.B. Carruthers, W.C. Dennison, C.M. Duarte, J.W. Fourqurean, K.L. Heck Jr., A.R. Huges, G.A. Kendrick, W.J. Kenworthy, S. Olyarnik, F.T. Short, M. Waycott, and S.L. Williams. 2006. A global crisis for seagrass ecosystems. Bioscience 56 (12): 987–996.

    Google Scholar 

  • Pauly, D., and J. McLean. 2003. In a perfect ocean. The state of fisheries and ecosystems in the North Atlantic Ocean. Washington: Island Press.

    Google Scholar 

  • Pauly, D., V. Christensen, J. Dalsgaard, R. Froese, and F.C. Torres Jr. 1998. Fishing down marine food webs. Science (Washington, D.C.) 279: 860–863.

    CAS  Google Scholar 

  • Piazzi, L., E. Balestri, and F. Cinelli. 2000. Grazing of inflorescences of the seagrass Posidonia oceanica (L.) Delile. Botanica Marina 43: 581–584.

    Google Scholar 

  • Planes, S., N. Raventos, B. Ferrari, and T. Alcoverro. 2011. Fish herbivory leads to shifts in seagrass Posidonia oceanica investments in sexual reproduction. Marine Ecology Progress Series 431: 205–213.

    Google Scholar 

  • Prado, P., and K.L. Heck. 2011. Seagrass selection by omnivorous and herbivorous consumers: Determining factors. Marine Ecology Progress Series 429: 45–55.

    Google Scholar 

  • Prado, P., F. Tomas, T. Alcoverro, and J. Romero. 2007. Extensive direct measurements of Posidonia oceanica defoliation confirm the importance of herbivory in temperate seagrass meadows. Marine Ecology Progress Series 340: 63–71.

    Google Scholar 

  • Prado, P., S. Farina, F. Tomas, J. Romero, and T. Alcoverro. 2008. Marine protection and meadow size alter fish herbivory in seagrass ecosystems. Marine Ecology Progress Series 371: 11–21.

    Google Scholar 

  • Preen, A. 1995. Impacts of dugong foraging on seagrass habitats: Observational and experimental evidence for cultivation grazing. Marine Ecology Progress Series 124: 201–213.

    Google Scholar 

  • Price, P.W., C.E. Bouton, P. Gross, B.A. McPheron, J.N. Thompson, and A.E. Weis. 1980. Interactions among three trophic levels: Influence of plants on interactions between insect herbivores and natural enemies. Annual Review of Ecological Systematics 11 (1): 41–65.

    Google Scholar 

  • Ramula, S., K.N. Paige, T. Lennartsson, and J. Toumi. 2019. Overcompensation: A 30-year perspective. Ecology 100 (5): e02667.

    Google Scholar 

  • Raupp, M.J., and R.F. Denno. 1983. Leaf age as a predictor of herbivore distribution and abundance p: 91-124. In Variable plants and herbivores in natural and managed systems, ed. R.F. Dennon and M.S. McClure. New York: Academic Press.

    Google Scholar 

  • Rauscher, M.D. 1981. Host plant selection by Battus philenor butterflies: The roles of predation, nutrition, and plant chemistry. Ecological Monographs 51 (1): 1–20.

    Google Scholar 

  • Reynolds, P.L., and J.F. Bruno. 2012. Effects of trophic skewing of species richness on ecosystem functioning in a diverse marine community. PLoS One 7 (5): e36196. https://doi.org/10.1371/journal.pone.0036196.

    Article  CAS  Google Scholar 

  • Reynolds, L.K., L.A. Carr, and K.E. Boyer. 2012. A non-native amphipod consumes eelgrass inflorescences in San Francisco Bay. Marine Ecology Progress Series 451: 107–118.

    Google Scholar 

  • Rodriguez, A.R., and K.L. Heck Jr. 2020. Green turtle herbivory and its effects on warm, temperate seagrass meadows: Tropicalization of St. Joseph Bay, Florida (USA). Marine Ecology Progress Series 639: 37–51.

    Google Scholar 

  • Rotini, A., I.R. Tibbetts, L. Migliore, and R.A. Rossini. 2018. The trade-off between digestibility and phenol content influences the food choice of the obligate seagrass-feeding neritid snail Smaragdia souverbiana. Journal of Molluscan Studies 84 (1): 12–18.

    Google Scholar 

  • Sammarti, N., L. Saiz, I. Llagostera, M. Perez, and J. Romero. 2014. Tolerance responses to simulated herbivory in the seagrass Cymodocea nodosa. Marine Ecology Progress Series 517: 159–169.

    Google Scholar 

  • Schroeder, L.A. 1986. Changes in tree leaf quality and growth performance of lepidopteran larvae. Ecology 67 (6): 1628–1636.

    Google Scholar 

  • Scott, A.L., P.H. York, C. Duncan, P.I. Macreadie, R.M. Connolly, M.T. Ellis, J.C. Jarvis, K.I. Jinks, H. Marsh, and M.A. Rasheed. 2018. The role of herbivory in structuring tropical seagrass ecosystem service delivery. Frontiers in Plant Science 9: 127. https://doi.org/10.3389/fpls.2018.00127.

    Article  Google Scholar 

  • Scott, J.J., T.C. Adam, A. Duran, D.F. Burkepile, and D.B. Rasher. 2020. Intestinal microbes: An axis of functional diversity among large marine consumers. Proceedings of the Royal Society B: Biological Sciences 287 (1924): 20192367.

    Google Scholar 

  • Scriber, J.M., and P.P. Feeny. 1977. Stabilization of the rate of nitrogen accumulation by the larvae of the cabbage butterfly on wild and cultivated food plants. Ecological Monographs 47: 209–228.

    Google Scholar 

  • Shurin, J.B., D.S. Gruner, and H. Hillebrand. 2006. All wet or dried up? Real differences between aquatic and terrestrial food webs Proceedings Royal Society London. Series B Biological Science 273: 1–9.

    Google Scholar 

  • Sieg, R.D., and J. Kubanek. 2013. Chemical ecology of marine angiosperms: Opportunities at the interface of marine and terrestrial systems. Journal of Chemical Ecology 39 (6): 687–711.

    CAS  Google Scholar 

  • Simpson, S.J., and C.L. Simpson. 1990. The mechanisms of nutritional compensation by phytophagous insects. In Insect-plant interactions, ed. E.A. Bernays, 2nd ed., 111–160. Boca Raton: CRC.

    Google Scholar 

  • Slansky, F.J. 1993. Nutritional ecology: The fundamental quest for nutrients. In Caterpillars: Ecological and evolutionary constraints on foraging, ed. N.E. Stamp and T.M. Casey, 29–91. New York: Chapman Hall.

    Google Scholar 

  • Steele, L., and J.F. Valentine. 2012. Idiosyncratic responses of seagrass phenolic production following sea urchin grazing. Marine Ecology Progress Series 466: 81–92.

    CAS  Google Scholar 

  • Steele, L., and J.F. Valentine. 2015. Seagrass deterrence to mesograzer herbivory: Evidence from mesocosm experiments and feeding preference trials. Marine Ecology Progress Series 524: 83–94.

    Google Scholar 

  • Sumoski, S.E., and R.J. Orth. 2012. Biotic dispersal in eelgrass Zostera marina. Marine Ecology Progress Series 471: 1–10.

    Google Scholar 

  • Thayer, G.W., D.W. Engel, and M.W. La Croix. 1977. Seasonal distribution and changes in the nutritive quality of living and detrital fractions of Zostera marina L. Journal of Experimental Marine Biology and Ecology 30 (2): 109–127.

    CAS  Google Scholar 

  • Thayer, G.W., K.A. Bjorndal, J.C. Ogden, S.L. Williams, and J.C. Zieman. 1984. Role of larger herbivores in seagrass communities. Estuaries 7 (4): 351–376.

    Google Scholar 

  • Tol, S.J., J.C. Jarvis, P.H. York, A. Grech, B.C. Congdon, and R.G. Coles. 2017. Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores. Scientific Reports 7 (4458): 1–8. https://doi.org/10.1038/s41598-017-04421-1.

    Article  CAS  Google Scholar 

  • Tomas, F., X. Turon, and J. Romero. 2005. Seasonal and small-scale spatial variability of herbivory pressure on the temperate seagrass Posidonia oceanica. Marine Ecology Progress Series 301: 94–107.

    Google Scholar 

  • Tomas, F., J.M. Abbott, C. Steinberg, M. Balk, S.L. Williams, and J.J. Stachowicz. 2011. Plant genotype and nitrogen loading influence seagrass productivity, biochemistry, and plant-animal-interactions. Ecology 92 (9): 1807–1817.

    CAS  Google Scholar 

  • Vadas, R.L. 1977. Preferential feeding: An optimization strategy in sea urchins. Ecological Monographs 47 (4): 337–371.

    Google Scholar 

  • Valentine, J.F., and J.E. Duffy. 2006. The central role of grazing in seagrass ecology. In Seagrasses: Biology, ecology and conservation, ed. A.W.D. Larkum, R.J. Orth, and C.M. Duarte, 463–501. Dordrecht: Springer.

    Google Scholar 

  • Valentine, J.F., and K.L. Heck. 1991. The role of sea urchin herbivory in regulating subtropical seagrass meadows: Evidence from field manipulations in the northern Gulf of Mexico. Journal of Experimental Marine Biology and Ecology 154 (2): 215–230.

    Google Scholar 

  • Valentine, J.F., and K.L. Heck. 1999. Seagrass herbivory: Evidence for the continued grazing of marine grasses. Marine Ecology Progress Series 176: 291–302.

    Google Scholar 

  • Valentine, J.F., and K.L. Heck Jr. 2001. The role of leaf nitrogen content in determining turtlegrass (Thalassia testudinum) grazing: Field and laboratory tests with a generalized herbivore. Journal of Experimental Marine Biology and Ecology 258 (1): 65–86.

    CAS  Google Scholar 

  • Valentine, J.F., K.L. Heck Jr., J. Busby, and D. Webb. 1997. Experimental evidence that herbivory can increase shoot density in a subtropical turtlegrass (Thalassia testudinum) meadow. Oecologia 112: 193–200.

    Google Scholar 

  • Valentine, J.F., K.L. Heck Jr., K.D. Kirsch, and D. Webb. 2000. Seagrass herbivory in the turtlegrass habitats of the Florida Keys. Marine Ecology Progress Series 200: 213–228.

    Google Scholar 

  • Valentine, J.F., E. Blythe, S. Madhavan, and T.D. Sherman. 2004. Effects of simulated herbivory on nitrogen enzyme levels, assimilation and allocation in Thalassia testudinum. Aquatic Botany 79 (3): 235–255.

    CAS  Google Scholar 

  • Valentine, J.F., K.L. Heck, D. Blackmon, M.E. Goecker, J. Christian, R.M. Kroutil, K.D. Kirsch, B.J. Peterson, M. Beck, and M.A. Vanderklift. 2007. Food web interactions along seagrass -coral reef boundaries: Effects of piscivore reductions on cross -habitat energy exchange. Marine Ecology Progress Series 333: 37–50.

    Google Scholar 

  • Valentine, J.F., K.L. Heck Jr., D. Blackmon, B.J. Peterson, M.E. Goecker, J. Christian, R.M. Kroutil, M.A. Vanderklift, K.D. Kirsch, and M. Beck. 2008. Exploited species impacts on trophic linkages along reef -seagrass interfaces in the Florida Keys. Ecological Applications 18 (6): 1501–1515.

    Google Scholar 

  • Valiela, I. (1995) Marine Ecological Processes, 2nd Edition. Springer Verlag.

  • van Tussenbroek, B.I., and A. Brearly. 1998. Isopod burrowing in leaves of turtle grass, Thalassia testudinum, in a Mexican Caribbean reef lagoon. Marine and Freshwater Research 49 (6): 525–531.

    Google Scholar 

  • van Tussenbroek, B.I., and M. Muhlia-Montero. 2013. Can floral consumption by fish shape traits of seagrass flowers? Evolutionary Ecology 27 (2): 269–284. https://doi.org/10.1007/s10682-012-9600-4.

  • van Tussenbroek, B.I., L. Monroy-Velazquez, and V. Solis-Weiss. 2012. Meso-fauna foraging on seagrass pollen may serve in marine zoophilous pollination. Marine Ecology Progress Series 469: 1–6.

    Google Scholar 

  • van Tussenbroek, B.I., N. Villamil, J. Márquez-Guzmán, R. Wong, L. Monroy-Velázquez, and V. Solis-Weiss. 2016. Experimental evidence of pollination in marine flowers by invertebrate fauna. Nature Communications 7 (1): 12980. https://doi.org/10.1038/ncomms12980.

    Article  CAS  Google Scholar 

  • Vélez-Juarbe, J. 2014. Ghost of seagrasses past: Using sirenians as a proxy for historical distribution of seagrasses. Paleogeography, Palaeoclimatology, Paleoecology 400: 41–49.

    Google Scholar 

  • Vélez-Juarbe, J., D.P. Domning, and N.D. Pyenson. 2012. Iterative evolution of sympatric seacow (Dugongidae, Sirenia) assemblages during the past ∼26 million years. PLoS One 7 (2): e31294. https://doi.org/10.1371/journal.pone.0031294.

    Article  CAS  Google Scholar 

  • Vergés, A., M.A. Becerro, T. Alcoverro, and J. Romero. 2007a. Experimental evidence of chemical deterrence against multiple herbivores in the seagrass Posidonia oceanica. Marine Ecology Progress Series 343: 107–114.

    Google Scholar 

  • Vergés, A., M.A. Becerro, T. Alcoverro, and J. Romero. 2007b. Variation in multiple traits of vegetative and reproductive seagrass tissues influences plant-herbivore interactions. Oecologia 151 (4): 675–686.

    Google Scholar 

  • Vergés, A., M. Perez, T. Alcoverro, and J. Romero. 2008. Compensation and resistance to herbivory in seagrasses: Induced responses to simulated consumption by fish. Oecologia 155 (4): 751–760.

    Google Scholar 

  • Vergés, A., T. Alcoverro, and J. Romero. 2011. Plant defences and the role of epibiosis in mediating within-plant feeding choices of seagrass consumers. Oecologia 166 (2): 381–390.

    Google Scholar 

  • Vergés, A., C. Doropoulos, R. Czarnik, K. McMahon, N. Llonch, and A.G.B. Poore. 2018. Latitudinal variation in seagrass herbivory: Global patterns and explanatory mechanisms. Global Ecology and Biogeography 27 (9): 1068–1079. https://doi.org/10.1111/geb.12767.

    Article  Google Scholar 

  • Voigt, E.P., and K.A. Hovel. 2019. Eelgrass structural complexity mediates mesograzer herbivory on epiphytic algae. Oecologia 189 (1): 199–209. https://doi.org/10.1007/s00442-018-4312-2.

    Article  Google Scholar 

  • Wigand, C., and A.C. Churchill. 1988. Laboratory studies on eelgrass seed and seedling predation. Estuaries 11 (3): 180–183.

    Google Scholar 

  • Williams, S.L. 1988. Thalassia testudinum productivity and grazing by green turtles in a highly disturbed seagrass bed. Marine Biology 98 (3): 447–455.

    Google Scholar 

  • Wirsing, A.J., H.R. Heithaus, and L.M. Dill. 2007. Fear factor: Do dugongs (Dugong dugon) trade food for safety from tiger sharks (Galeocerdo cuvier)? Oecologia 153 (4): 1031–1040.

    Google Scholar 

  • Wise, M.J., and W.G. Abrahamson. 2005. Beyond the compensatory continuum: Environmental resource levels and plant tolerance of herbivory. Oikos 190 (3): 417–428. https://doi.org/10.1111/j.0030-1299.2005.13878.x.

    Article  Google Scholar 

  • Zapata, O., and C. McMillan. 1979. Phenolic acids in seagrasses. Aquatic Botany 7: 307–317.

    CAS  Google Scholar 

  • Zidorn, C. 2016. Secondary metabolites of seagrasses (Alismatales and Potamogetonaceae; Alismatidae): Chemical diversity, bioactivity, and ecological function. Phytochemistry 124: 5–28. https://doi.org/10.1016/j.phytochem.2016.02.004.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the many colleagues, mentors, and students with whom we have learned about seagrass ecology over the years, most importantly Susan Williams. We appreciate the comments of Dr. Patricia Prado on a previous version of the manuscript and the anonymous reviewers.

Funding

We received financial support from the National Undersea Research Center at the University of North Carolina at Wilmington and the NOAA Coral Reef Conservation Program (UNCW #9537 and NA08OAR4300863), The Nature Conservancy’s Ecosystem Research Program (HO-CSD-083100 AL), The National Marine Fisheries Service (MARFIN Grant No: NA17FF2015), and NSF (awards OCE 919102217) The National Science Foundation (Alabama) Experimental Program to Stimulate Competitive Research (R11-8996152), the DISPro program, a joint program between the Environmental Protection Agency’s EMAP program and the National Park Service (Grant No. 2350-3-0882).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Valentine.

Additional information

Communicated by Dennis F. Whigham

Electronic supplementary material

ESM 1

(DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valentine, J.F., Heck, K.L. Herbivory in Seagrass Meadows: an Evolving Paradigm. Estuaries and Coasts 44, 491–505 (2021). https://doi.org/10.1007/s12237-020-00849-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00849-3

Keywords

Navigation