Skip to main content

Advertisement

Log in

Characterizing the Pathway and Rate of Salt Marsh Vegetation Dynamics: a Multivariate Approach

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The ability of plants to enhance sedimentation is a critical factor in modeling the evolution and fate of salt marshes under future scenarios of climate change. Most eco-geomorphic models have been developed based on the changing biomass of a single species (e.g., Spartina alterniflora) through time; therefore, it still remains a challenge to predict how a vegetation cover consisting of multiple species will change through interspecific competition and facilitation under sea-level variations. In a temperate marsh of the Danish Wadden Sea, the plant species composition across a total of 402 quadrats (1 m2) was compared between 2006 and 2012 using multivariate ordination techniques. At low-elevation sites (< 0.8 m Danish Ordnance Zero), where many stress-tolerant species coexisted in 2006, the direction of vegetation changes was dominantly progressive, indicating decreases in stress-tolerant plants and increases in high-marsh competitors over the 6-year study interval. In contrast, whenever the competitive shrubby species Atriplex portulacoides was dominant in 2006 (> 80% relative proportion), the rate of vegetation change was nearly zero, due to little encroachment of other species into this already stable, dense matrix. These discussions imply that the direction and rate of multi-species interactions can be predicted by the initial environmental (i.e., marsh surface elevation, soil bulk density, distance from tidal creek) and biological conditions (i.e., plant species richness and abundance). Based on these findings, it is proposed that the evolution of salt marshes will be better understood by more explicit incorporation of multi-species interactions into future eco-geomorphic modeling efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aagaard, T., N. Nielsen, and J. Nielsen. 1995. Skallingen—origin and evolution of a barrier spit, 35. Copenhagen: Meddelelser fra Skalling-Laboratoriet Bind.

    Google Scholar 

  • Adam, P. 1990. Saltmarsh ecology. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511565328.

    Book  Google Scholar 

  • Austin, M.P. 2013. Inconsistencies between theory and methodology: A recurrent problem in ordination studies. Journal of Vegetation Science 24 (2): 251–268. https://doi.org/10.1111/j.1654-1103.2012.01467.x.

    Article  Google Scholar 

  • Bakker, J.P., J. de Leeuw, K.S. Dijkema, P.C. Leendertse, H.H.T. Prins, and J. Rozema. 1993. Salt marshes along the coast of the Netherlands. Hydrobiologia 265 (1-3): 73–95. https://doi.org/10.1007/BF00007263.

    Article  Google Scholar 

  • Bakker, J.P., H. Olff, J.H. Willems, and M. Zobel. 1996. Why do we need permanent plots in the study of long-term vegetation dynamics? Journal of Vegetation Science 7 (2): 147–156. https://doi.org/10.2307/3236314.

    Article  Google Scholar 

  • Bartholdy, J., C. Christiansen, and H. Kunzendorf. 2004. Long term variations in back-barrier salt marsh deposition on the Skallingen peninsulathe Danish Wadden Sea. Marine Geology 203 (1-2): 1–21. https://doi.org/10.1016/S0025-3227(03)00337-2.

    Article  Google Scholar 

  • Beeftink, W.G. 1987. Vegetation responses to changes in tidal inundation of salt marshes. In Disturbance in grasslands, ed. J. van Andel, J.P. Bakker, and R.W. Snaydon, 97–117. Dordrecht: Dr. W. Junk Publishers. https://doi.org/10.1007/978-94-009-4055-0_7.

    Chapter  Google Scholar 

  • Bertness, M.D., P.J. Ewanchuk, and B.R. Silliman. 2002. Anthropogenic modification of New England salt marsh landscapes. Proceedings of the National Academy of Sciences of the United States of America 99 (3): 1395–1398. https://doi.org/10.1073/pnas.022447299.

    Article  CAS  Google Scholar 

  • Boorman, L.A., A. Garbutt, and D. Barrat. 1998. The role of vegetation in determining patterns of the accretion in salt marsh sediment. In Sedimentary processes in the intertidal zone, ed. K.S. Black, D.M. Paterson, and A. Cramp, 389–399. London: Geological Society.

    Google Scholar 

  • Borcard, D., P. Legendre, and P. Drapeau. 1992. Partialling out the spatial component of ecological variation. Ecology 73 (3): 1045–1055. https://doi.org/10.2307/1940179.

    Article  Google Scholar 

  • Bouma, T.J., M.B. de Vries, E. Low, G. Peralta, I.C. Tánczos, J. van de Koppel, and P.M.J. Herman. 2005. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 86 (8): 2187–2199. https://doi.org/10.1890/04-1588.

    Article  Google Scholar 

  • Clarke, K.R. 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18 (1): 117–143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x.

    Article  Google Scholar 

  • Collins, S.L., S.M. Glenn, and D.J. Gibson. 1995. Experimental analysis of intermediate disturbance and initial floristic composition: Decoupling cause and effect. Ecology 76 (2): 486–492. https://doi.org/10.2307/1941207.

    Article  Google Scholar 

  • D’Alpaos, A., S. Lanzoni, M. Marani, and A. Rinaldo. 2007. Landscape evolution in tidal embayments: Modeling the interplay of erosion, sedimentation, and vegetation dynamics. Journal of Geophysical Research 112 (F1): F01008. https://doi.org/10.1029/2006JF000537.

    Article  Google Scholar 

  • Davy, A.J., M.J.H. Brown, H.L. Mossman, and A. Grant. 2011. Colonization of a newly developing salt marsh: Disentangling independent effects of elevation and redox potential on halophytes. Journal of Ecology 99 (6): 1350–1357. https://doi.org/10.1111/j.1365-2745.2011.01870.x.

    Article  CAS  Google Scholar 

  • Diamond, J.M. 1975. Assembly of species communities. In Ecology and evolution of communities, ed. M.L. Cody and J.M. Diamond, 342–444. Cambridge: Harvard University Press.

    Google Scholar 

  • Dufrêne, M., and P. Legendre. 1997. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs 67: 345–366.

    Google Scholar 

  • Fagherazzi, S., M.L. Kirwan, S.M. Mudd, G.R. Guntenspergen, S. Temmerman, A. D’Alpaos, J. van de Koppel, J.M. Rybczyk, E. Reyes, C. Craft, and J. Clough. 2012. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics 50:RG1002. https://doi.org/10.1029/2011RG000359.

  • Feagin, R.A., M.L. Martinez, G. Mendoza-Gonzalez, and R. Costanza. 2010. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: A case study from an urban region. Ecology and Society 15: 14. http://www.ecologyandsociety.org/vol15/iss4/art14/. https://doi.org/10.5751/ES-03724-150414.

    Article  Google Scholar 

  • French, J.R., and T. Spencer. 1993. Dynamics of sedimentation in a tide-dominated backbarrier salt marsh, Norfolk, UK. Marine Geology 110 (3-4): 315–331. https://doi.org/10.1016/0025-3227(93)90091-9.

    Article  Google Scholar 

  • Fukami, T., T.M. Bezemer, S.R. Mortimer, and W.H. van der Putten. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecology Letters 8 (12): 1283–1290. https://doi.org/10.1111/j.1461-0248.2005.00829.x.

    Article  Google Scholar 

  • Inouye, R., and D. Tilman. 1995. Convergence and divergence of old-field vegetation after 11 yr of nitrogen addition. Ecology 76 (6): 1872–1887. https://doi.org/10.2307/1940720.

    Article  Google Scholar 

  • Kim, D. 2012. Biogeomorphic feedbacks drive dynamics of vegetation–landform complex in a coastal riparian system. Ecosphere 3 (8): 74. https://doi.org/10.1890/ES12-00028.1.

    Article  Google Scholar 

  • Kim, D. 2013. Incorporation of multi-scale spatial autocorrelation in soil moisture–landscape modeling. Physical Geography 34: 441–455.

    Article  CAS  Google Scholar 

  • Kim, D. 2014. Rates of vegetation dynamics along elevation gradients in a backbarrier salt marsh of the Danish Wadden Sea. Estuaries and Coasts 37 (3): 610–620. https://doi.org/10.1007/s12237-013-9697-x.

    Article  CAS  Google Scholar 

  • Kim, D., and Y.H. Shin. 2016. Spatial autocorrelation potentially indicates the degree of changes in the predictive power of environmental factors for plant diversity. Ecological Indicators 60: 1130–1141. https://doi.org/10.1016/j.ecolind.2015.09.021.

    Article  CAS  Google Scholar 

  • Kim, D., D.M. Cairns, and J. Bartholdy. 2010. Environmental controls on multiscale spatial pattern of salt marsh vegetation. Physical Geography 31 (1): 58–78. https://doi.org/10.2747/0272-3646.31.1.58.

    Article  Google Scholar 

  • Kim, D., D.M. Cairns, and J. Bartholdy. 2011. Wind-driven sea-level variation influences dynamics of salt marsh vegetation. Annals of the Association of American Geographers 101 (2): 231–248. https://doi.org/10.1080/00045608.2010.544933.

    Article  Google Scholar 

  • Kim, D., D.M. Cairns, J. Bartholdy, and C.L.S. Morgan. 2012. Scale-dependent correspondence of floristic and edaphic gradients across salt marsh creeks. Annals of the Association of American Geographers 102 (2): 276–294. https://doi.org/10.1080/00045608.2011.620520.

    Article  Google Scholar 

  • Kim, D., D.M. Cairns, and J. Bartholdy. 2013. Tidal creek morphology and sediment type influence spatial trends in salt marsh vegetation. The Professional Geographer 65 (4): 544–560. https://doi.org/10.1080/00330124.2013.820617.

    Article  CAS  Google Scholar 

  • Kirwan, M.L., and A.B. Murray. 2007. A coupled geomorphic and ecological model of tidal marsh evolution. Proceedings of the National Academy of Sciences of the United States of America 104 (15): 6118–6122. https://doi.org/10.1073/pnas.0700958104.

    Article  CAS  Google Scholar 

  • Kirwan, M.L., G.R. Guntenspergen, A. D'Alpaos, J.T. Morris, S.M. Mudd, and S. Temmerman. 2010. Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters 37 (23): L23401. https://doi.org/10.1029/2010GL045489.

    Article  Google Scholar 

  • Langlois, E., A. Bonis, and J.B. Bouzillé. 2003. Sediment and plant dynamics in saltmarshes pioneer zone: Puccinellia maritima as a key species? Estuarine, Coastal and Shelf Science 56 (2): 239–249. https://doi.org/10.1016/S0272-7714(02)00185-3.

    Article  Google Scholar 

  • Leendertse, P.C., A.J.M. Roozen, and J. Rozema. 1997. Long-term changes (1953-1990) in the salt marsh vegetation at the Boschplaat on Terschelling in relation to sedimentation and flooding. Plant Ecology 132 (1): 49–58. https://doi.org/10.1023/A:1009795002076.

    Article  Google Scholar 

  • Li, H., and S.L. Yang. 2009. Trapping effect of tidal marsh vegetation on suspended sediment, Yangtze Delta. Journal of Coastal Research 25: 915–924.

    Article  Google Scholar 

  • Mather, P.M. 1976. Computational methods of multivariate analysis in physical geography. New York: John Wiley and Sons, Inc..

    Google Scholar 

  • McCune, B., and J.B. Grace. 2002. Analysis of ecological communities. Oregon: MjM Software Design.

    Google Scholar 

  • Meehl, G.A., T.F. Stocker, W. Collins, P. Friedlingstein, A. Gaye, J. Gregory, A. Kitoh, R. Knutti, J. Murphy, A. Noda, S. Raper, I. Watterson, A. Weaver, and Z.-C. Zhao. 2007. Global climate projections. Climate change 2007: the physical science basis. In Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, 747–845. Cambridge: Cambridge University Press.

    Google Scholar 

  • Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve, and D.R. Cahoon. 2002. Responses of coastal wetlands to rising sea level. Ecology 83 (10): 2869–2877. https://doi.org/10.1890/0012-9658(2002)083[2869:ROCWTR]2.0.CO;2.

  • Morzaria-Luna, H., J.C. Callaway, G. Sullivan, and J.B. Zedler. 2004. Relationship between topographic heterogeneity and vegetation patterns in a Californian salt marsh. Journal of Vegetation Science 14: 523–530.

    Article  Google Scholar 

  • Mossman, H.L., A.J. Davy, and A. Grant. 2012. Quantifying local variation in tidal regime using depth-logging fish tags. Estuarine, Coastal and Shelf Science 96: 122–128.

    Google Scholar 

  • Mudd, S.M., S. Fagherazzi, J.T. Morris, and D.J. Furbish. 2004. Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: Toward a predictive model of marsh morphologic and ecologic evolution. In The ecogeomorphology of salt marshes, ed. S. Fagherazzi, M. Marani, and L.K. Blum, vol. 59, 165–188. Washington D.C.: AGU, Coastal and Estuarine Studies.

    Google Scholar 

  • Økland, R.H. 1986. Reseating of ecological gradients. III. The effect of scale on niche breadth measurements. Nordic Journal of Botany 6: 671–677.

    Article  Google Scholar 

  • Orlóci, L. 1967. Data centering: A review and evaluation with reference to component analysis. Systematic Zoology 16 (3): 208–212. https://doi.org/10.2307/2412067.

    Article  Google Scholar 

  • Palmer, M.W. 1993. Putting things in even better order: The advantages of canonical correspondence analysis. Ecology 74 (8): 2215–2230. https://doi.org/10.2307/1939575.

    Article  Google Scholar 

  • Pennings, S.C., and R.M. Callaway. 1992. Salt marsh plant zonation: The relative importance of competition and physical factors. Ecology 73 (2): 681–690. https://doi.org/10.2307/1940774.

    Article  Google Scholar 

  • Peres-Neto, P.R., P. Legendre, S. Dray, and D. Borcard. 2006. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87 (10): 2614–2625. https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2.

  • Pielou, E.C. 1984. The interpretation of ecological data: A primer on classification and ordination. New York: John Wiley & Sons.

    Google Scholar 

  • Rangel, T.F., J.A.F. Diniz, and L.M. Bini. 2010. SAM: A comprehensive application for spatial analysis in macroecology. Ecography 33 (1): 46–50. https://doi.org/10.1111/j.1600-0587.2009.06299.x.

    Article  Google Scholar 

  • Reed, D.J. 1995. The response of coastal marshes to sea-level rise: Survival or submergence? Earth Surface Processes and Landforms 20 (1): 39–48. https://doi.org/10.1002/esp.3290200105.

    Article  Google Scholar 

  • Rupprecht, F., A. Wanner, M. Stock, and K. Jensen. 2015. Succession in salt marsheslarge-scale and long-term patterns after abandonment of grazing and drainage. Applied Vegetation Science 18 (1): 86–98. https://doi.org/10.1111/avsc.12126.

    Article  Google Scholar 

  • Rydin, H., and S.O. Borgegård. 1988. Primary succession over sixty years on hundred-year old islets in Lake Hjälmaren, Sweden. Plant Ecology 77 (1-3): 159–168. https://doi.org/10.1007/BF00045761.

    Article  Google Scholar 

  • Samuels, C.L., and J.A. Drake. 1997. Divergent perspectives on community divergence. Trends in Ecology & Evolution 12 (11): 427–432. https://doi.org/10.1016/S0169-5347(97)01182-8.

    Article  CAS  Google Scholar 

  • Schmitt, C., N. Weston, and C. Hopkinson. 1998. Preliminary evaluation of sedimentation rates and species distribution in Plum Island Estuary, Massachusetts. Biological Bulletin 195 (2): 232–233. https://doi.org/10.2307/1542855.

    Article  CAS  Google Scholar 

  • Sokal, R.R., and F.J. Rohlf. 1995. Biometry: The principles and practice of statistics in biological research. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • Suchrow, S., and K. Jensen. 2010. Plant species responses to an elevational gradient in German North Sea salt marshes. Wetlands 30 (4): 735–746. https://doi.org/10.1007/s13157-010-0073-3.

    Article  Google Scholar 

  • ter Braak, C.J.F., and I.C. Prentice. 1988. A theory of gradient analysis. Advances in Ecological Research 18: 271–317. https://doi.org/10.1016/S0065-2504(08)60183-X.

    Article  Google Scholar 

  • Tind, K. 2003. Danmarks flora. Copenhagen: Gyldendal.

    Google Scholar 

  • Vélez-Martín, A., A.J. Davy, C.J. Luque, and E.M. Castellanos. 2018. Reference conditions for restoration of heterogeneous Mediterranean wetland are best defined by multiple, hydrologically diverse sites. Restoration Ecology 26:145–155.. https://doi.org/10.1111/rec.12549.

  • Warren, R.S., and W.A. Niering. 1993. Vegetation change on a northeast tidal marsh: Interaction of sea-level rise and marsh accretion. Ecology 74 (1): 96–103. https://doi.org/10.2307/1939504.

    Article  Google Scholar 

  • Westhoff, V. 1987. Salt marsh communities of three West Frisian Islands, with some notes on their long-term succession during half a century. In Vegetation between land and sea: Structure and processes, ed. A.H.L. Huiskes, C.W.P.M. Blom, and J. Rozema, 16–40. Dordrecht: Dr. W. Junk Publishers. https://doi.org/10.1007/978-94-009-4065-9_3.

    Chapter  Google Scholar 

  • Wilson, J.B. 1999. Assembly rules in plant communities. In Ecological assembly rules: Perspectives, advances, retreats, ed. E. Weiher and P.A. Keddy, 130–164. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511542237.006.

    Chapter  Google Scholar 

  • Zedler, J.B., J.C. Callaway, J.S. Desmond, G. Vivian-Smith, G.D. Williams, G. Sullivan, A.E. Brewster, and B.K. Bradshaw. 1999. Californian salt-marsh vegetation: An improved model of spatial pattern. Ecosystems 2 (1): 19–35. https://doi.org/10.1007/s100219900055.

    Article  Google Scholar 

Download references

Acknowledgments

The logistical support from Jesper Bartholdy in the Skallingen field station is greatly appreciated.

Funding

Financial support was provided by (1) the National Science Foundation (#0825753) of the USA, (2) the National Research Foundation of South Korea (NRF-2017R1C1B5076922), (3) the Research Resettlement Fund for the new faculty of Seoul National University, and (4) the 4-Zero Land Space Creation of the Ministry of Education and the NRF (#1345258304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daehyun Kim.

Additional information

Communicated by Charles T. Roman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, D. Characterizing the Pathway and Rate of Salt Marsh Vegetation Dynamics: a Multivariate Approach. Estuaries and Coasts 41, 1370–1380 (2018). https://doi.org/10.1007/s12237-018-0377-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-018-0377-8

Keywords

Navigation