Skip to main content
Log in

Persistent Differences in Horizontal Gradients in Phytoplankton Concentration Maintained by Surf Zone Hydrodynamics

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Surf zones, regions of breaking waves, are at the interface between the shore and coastal ocean. Surf zone hydrodynamics may affect delivery of phytoplankton subsidies to the intertidal zone. Over a month of daily sampling at an intermediate surf zone with bathymetric rip currents and a reflective surf zone, we measured surf zone hydrodynamics and compared concentrations of coastal phytoplankton taxa in the surf zones to concentrations offshore. At the intermediate surf zone, ~80% of the variability in the concentration of coastal phytoplankton taxa within the surf zone was explained by their variation offshore; however, concentrations were much higher and lower than those offshore in samples from a bathymetric rip current and over the adjacent shoal, respectively. Hydrodynamics at this intermediate surf zone did not hinder the delivery of coastal phytoplankton to the surf zone, but the bathymetric rip current system appeared to redistribute phytoplankton concentrating them within eddies. At the reflective shore, we sampled surf zones at a beach and two adjacent rocky intertidal sites. Concentrations of typical coastal phytoplankton taxa were usually an order of magnitude or more lower than those offshore, even when offshore samples were collected just 20 m beyond the breakers. The phytoplankton assemblages inside and outside the surf zone often appeared to be disconnected. Surf zone hydrodynamics at the steep, reflective shore coupled with low phytoplankton concentrations in near-surface water appeared to limit delivery of phytoplankton subsidies to the surf zone. Surf zone hydrodynamics may be a key factor in the alongshore variation in phytoplankton subsidies to coastal communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bowen, A.J. 1969a. The generation of lonshore currents on a plane beach. Journal of Marine Research 27: 2569–2577.

    Google Scholar 

  • Bowen, A.J. 1969b. Rip currents. I. Theoretical investigations. Journal of Geophysical Research 74: 5467–5478.

    Article  Google Scholar 

  • Bracken, M.S., B.A. Menge, M.M. Foley, C.J.B. Sorte, J. Lubchenco, and D.R. Schiel. 2012. Mussel selectivity for high-quality food drives carbon inputs into open-coast intertidal ecosystems. Marine Ecology Progress Series 459: 53.62.

    Article  Google Scholar 

  • Brown, J.A. 2014. Cross-shore exchange on natural beaches. PhD, Naval Postgraduate School Monterey CA.

  • Brown, J.A., J.H. MacMahan, A.J.H.M. Reniers, and E.B. Thornton. 2015. Field observations of surfzone-inner shelf exchange on a rip-channeled beach. Journal of Physical Oceanography 45: 2339–2355.

    Article  Google Scholar 

  • Castelle, B., and G. Coco. 2013. Surf zone flushing on embayed beaches. Geophysical Research Letters 40: 2206–2210.

    Article  Google Scholar 

  • Castelle, B., A. Reniers, and J. MacMahan. 2014. Bathymetric control of surf zone retention on a rip-channelled beach. Ocean Dynamics 64: 1221–1231.

    Article  Google Scholar 

  • Csordas, A., and J.K. Wang. 2004. An integrated photobioreactor and foam fractionation unity for the growth and harvest of Chaetoceros spp. in open systems. Aquacultural Engineering 30: 15–30.

    Article  Google Scholar 

  • Fujimura, A. 2015. Numerical modeling of onshore plankton transport, University of Miami.

  • Fujimura, A., A. Reniers, C. Claire Paris, A.L. Shanks, J. MacMahan, and S. Morgan. 2013. Slope-dependent biophysical modeling of surf zone larval transport. In Coastal dynamics 2013, 661–670.

  • Fujimura, A., A. Reniers, C. Claire Paris, A.L. Shanks, J. MacMahan, and S. Morgan. 2014. Numerical simulations of larval transport into a rip-channeled surf zone. Limnology and Oceanography 56: 1434–1447.

    Article  Google Scholar 

  • Gaines, S.D., S. Brown, and J. Roughgarden. 1985. Spatial variation in larval concentrations as a cause of spatial variation in settlement for the barnacle Balanus glandula. Oecologia 67: 267–272.

    Article  Google Scholar 

  • Garver, J.L. 1979. A survey of surf diatom blooms along the Oregon Coast, University of Washington Seattle.

  • Garver, J.L., and J. Lewin. 1981. Persistent blooms of surf diatoms along the Pacific coast, U.S.A. I. Physical characteristics of the coastal region in relation to the distribution and abundance of the species. Estuarine, Coastal and Shelf Science 12: 217–229.

    Article  Google Scholar 

  • Guza, R.T., and E.B. Thornton. 1980. Local and shoaled comparisons of sea surface elevations, pressures, and velocities. Journal of Geophysical Research 85: 1524–1530.

    Article  Google Scholar 

  • Hally-Rosendahl, K., and F. Feddersen. 2016. Modeling surfzone to inner-shelf tracer exchange. Journal of Geophysical Research 121: 4007–4025.

    Google Scholar 

  • Hally-Rosendahl, K., F. Feddersen, and R.T. Guza. 2014. Cross-shore tracer exchange between the surfzone and inner-shelf. Journal of Geophysical Research 119.

  • Heaney, S.I., and R.W. Eppley. 1981. Light, temperature and nitrogen as interacting factors affecting diel vertical migrations of dinoflagellates in culture. Journal of Plankton Research 3: 331–344.

    Article  Google Scholar 

  • Johnson, D., and C. Pattiaratchi. 2004. Application, modelling and validation of surfzone drifters. Coastal Engineering 51: 455–471.

    Article  Google Scholar 

  • Kamermans, P. 1993. Food limitation in cockles (Cerastoderma edule (L.)): Influences of location on tidal flat and of nearby presence of mussel beds. Netherland Journal of Sea Research 31: 71–81.

    Article  Google Scholar 

  • Komar, P.D. 1983. Nearshore currents and sand transport on beaches. In Elsevier oceanography series, ed. B. Johns. New York, NY: Elsevier.

  • Krenz, C., B.A. Menge, T.L. Freidenburg, J. Lubchenco, F. Chan, and e. al. 2011. Ecological subsidies to rocky intertidal communities: Linear or non-linear changes along a consistent geographic upwelling transition? Journal of Experimental Marine Biology and Ecology 409: 361–370.

    Article  Google Scholar 

  • Krichnavaruck, S., S. Oowtongsook, and P. Pavasant. 2007. Enhanced productivity of Chaetoveros calcitrans in airlift phtobioreactors. Bio/Technology 98: 2123–2130.

    Google Scholar 

  • Leslie, H.M., E.N. Breck, C. Chan, J. Lubchenco, and B.A. Menge. 2005. Barnacle reproductive hotspots linked to nearshore ocean conditions. PNAS 102: 10534–10539.

    Article  CAS  Google Scholar 

  • Lippmann, T.C., and R.A. Holman. 1990. The spatial and temporal variability of sand bar morphology. Journal of Geophysical Research 95: 11575–11590.

    Article  Google Scholar 

  • MacMahan, J., R. Thieke, R. Dean, G. Miller, J. Engle, E. Thornton, T. Stanton, A. Reniers, P. Ruggerio, and G. Gelfenbaum. 2001. Feasibility of measuring currents in the nearshore from a personal water craft. In Proceedings of the Fourth International Symposium Waves 2001, 10. San Francisco, California.

  • MacMahan, J., E.B. Thornton, T.P. Stanton, and A.J.H.M. Reniers. 2005. RIPEX: Observations of a rip current system. Marine Geology 218: 113–134.

    Article  Google Scholar 

  • MacMahan, J.H., J. Brown, J. Brown, E.B. Thornton, A.J.H.M. Reniers, T.P. Stanton, M. Henriquez, E. Gallagher, J. Morrison, M. Austin, T. Scott, and N. Senechal. 2009. Mean Lagrangian flow behavior on an open coast rip-channeled beaches: New perspectives. Marine Geology: doi:10.1016/j.margeo.2009.1009.1011.

  • MacMahan, J.H., J.W. Brown, J.A. Brown, E.B. Thornton, A.J.H.M. Reniers, T.P. Stanton, M. Henriquez, E. Gallagher, J. Morrison, M.J. Austin, T.M. Scott, and N. Senechal. 2010a. Mean Lagrangian flow behavior on an open coast rip-channeled beach: A new perspective. Marine Geology: 1–15.

  • MacMahan, J.H., J.W. Brown, J.A. Brown, E.B. Thornton, A.J.H.M. Reniers, T.P. Stanton, M. Henriquez, E. Gallagher, J. Morrison, M.J. Austin, T.M. Scott, and N. Senechal. 2010b. Mean Lagrangian flow behavior on an open coast rip-channeled beach: A new perspective. Marine Geology 268: 1–15.

    Article  Google Scholar 

  • MacMahan, J.H., E.B. Thornton, and A.J.H.M. Reniers. 2006. Rip current review. Coastal Engineering 53: 191–208.

    Article  Google Scholar 

  • McLachlan, A., and A. Brown. 2006. The ecology of sandy shores. Burlington: Elsevier.

    Google Scholar 

  • McPhee-Shaw, E.E., K.J. Nielsen, J.L. Largier, and B.A. Menge. 2011. Nearshore chlorophyll-a events and wave-driven transport. Geophysical Research Letters 38.

  • Menge, B.A., B.A. Daley, P.A. Wheeler, E.P. Dahlhoff, E. Sanford, and P.T. Strub. 1997a. Benthic-pelagic links and rocky intertidal communities: Bottom-up effects on top-down control? Proceedings National Academy of Sciences USA 94: 14530–14535.

    Article  CAS  Google Scholar 

  • Menge, B.A., B.A. Daley, P.A. Wheeler, and P.T. Strub. 1997b. Rocky intertidal oceanography: An association between community structure and nearshore phytoplankton concentration. Limnology and Oceanography 42: 57–66.

    Article  CAS  Google Scholar 

  • Morgan, S., A. Shanks, A. Fujimura, A.J.H.M. Reniers, J. MacMahan, C. Griesemer, M. Jarvis, and J. Brown. 2016. Surfzone hydrodynamics as a key determinant of spatial variation in rocky intertidal communities. Royal Society of London, Proc B.

  • Parson, T.R., M. Takahashi, and B. Hargrave. 1984. Biological oceanographic processes. New York: Pergamon.

    Google Scholar 

  • Petersen, J.K., T.G. Nielsen, L. van Duran, and M. Maar. 2008. Depletion of plankton in a raft culture of Mytilus galloprovincialis in Ria de Vigo, NW Spain. I. Phytoplankton. Aquatic Biology 4: 113–125.

    Article  Google Scholar 

  • Phillips, N.E. 2005. Growth of filter-feedgin benthic invertbrates from a region with variable upwelling intensity. Marine Ecology Progress Series 295: 79–89.

    Article  Google Scholar 

  • Phillips, N.E. 2007. A spatial gradient in the potential reproductive output of the sea mussel Mytilus californianus. Marine Biology 151: 1543–1550.

    Article  Google Scholar 

  • Reniers, A.J.H.M., E.B. Thornton, T.P. Stanton, and J.A. Roelvink. 2004. Vertical flow structure during Sandy Duck: observations and modeling. Coastal Engineering 51:237–260.

  • Reniers, A.J.H.M., J.H. MacMagan, E.B. Thornton, T.P. Stanton, J.W. Henriquez, M. Brown, J.A. Brown, and E. Gallagher. 2009. Surfzone surface retention on a rip channeled beach. Journal of Geophysical Research 114: C10010.

    Article  Google Scholar 

  • Reniers, A.J.H.M., J.H. MacMahan, F.J. Beron-Vera, and M.J. Olascoaga. 2010. Rip-current pulses tied to Lagrangian coherent structures. Geophysical Research Letters 37: 05.

    Article  Google Scholar 

  • Rilov, G., S. Dudas, B. Menge, B. Grantham, J. Lubchenco, and D. Schiel. 2008. The surf zone: A semi-permeable barrier toonshore recruitment of invertebrate larvae? Journal of Experimental Marine Biology and Ecology 361: 59–74.

    Article  Google Scholar 

  • Schlichting, H.E.J. 1972. Seafoam, algae and protozoa. J. Elisha Mitchell Sci. Soc. J. 88: 186–187.

    Google Scholar 

  • Shanks, A.L., J. MacMahan, S.G. Morgan, A.J.H.M. Reiniers, M. Jarvis, J. Brown, A. Fujimura, and C. Griesemer. 2015a. Transport of larvae and detritus across the surf zone of a steep reflective pocket beach. Marine Ecology Progress Series 528: 71–86.

    Article  Google Scholar 

  • Shanks, A.L., S. Morgan, J. MacMahan, A.J.H.M. Reniers, R. Kudela, M. Jarvis, J. Brown, A. Fujimura, L. Ziccarelli, and G. C. 2016. Variation in the abundance of Pseudo-nitzschia and domoic acid with surf zone type. Harmful Algal Blooms 55: 172–178.

    Article  CAS  Google Scholar 

  • Shanks, A.L., S.G. Morgan, J. MacMahan, and A.J.H.M. Reniers. 2010. Surf zone physical and morphological regime as determinants of temporal and spatial variation in larval recruitment. Journal of Experimental Marine Biology and Ecology 392: 140–150.

    Article  Google Scholar 

  • Shanks, A.L., S.G. Morgan, J. MacMahan, and A.J.H.M. Reniers 2017a. Alongshore variation in barnacle populations is determined by surfzone hydrodynamics. Ecological Monographs.

  • Shanks, A.L., S.G. Morgan, J. MacMahan, A.J.H.M. Reniers, M. Jarvis, J. Brown, and C. Griesemer. 2014. Onshore transport of plankton by internal tides and upwelling-relaxation events. Marine Ecology Progress Series 502: 39–51.

    Article  Google Scholar 

  • Shanks, A.L., S.G. Morgan, J. MacMahan, A.J.H.M. Reniers, M. Jarvis, J. Brown, and C. Griesemer. 2015b. Transport of larvae and detritus across the surf zone of a steep reflective pocket beach. Marine Ecology Progress Series 528: 71–86.

    Article  Google Scholar 

  • Shanks, A.L., P. Sheeley, and L. Johnson 2017b. Phytoplankton subsidies to the intertidal zone are strongly affected by surfzone hydrodynamics. Marine Ecology.

  • Smith, J., and J.L. Largier. 1995. Observations of nearshore circulation: Rip currents. Journal of Geophysical Research 100: 10967–10975.

    Article  Google Scholar 

  • Sournia, A. 1978. Phytoplankton manual. Paris: UNESCO.

    Google Scholar 

  • Suanda, S.H., and F. Feddersen. 2015. A self-similar scaling for cross-shelf exchange driven by transient rip currents. Geophysical Research Letters 42: 5427–5434.

    Article  Google Scholar 

  • Talbot, M.M.B., and G.C. Bate. 1987a. Rip current characteristics and their role in the exchange of water and surf diatoms between the surf zone and nearshore. Estuarine Coastal and Shelf Science 25: 707–720.

    Article  Google Scholar 

  • Talbot, M.M.B., and G.C. Bate. 1987b. The spatial dynamics of surf diatom patches in a medium energy, cuspate beach. Botanica Marina 30: 459–465.

    Google Scholar 

  • Talbot, M.M.B., G.C. Bate, and E.E. Campbell. 1990. A review of the ecology of surf-zone diatoms, with special reference to Anaulus australis. Oceanography Marine Biology Annual. Review 28: 155–175.

    Google Scholar 

  • Thornton, E.B., and R.T. Guza. 1982. Energy saturation and phase speeds measured on a natural beach. Journal of Geophysical Research 87: 9499–9508.

    Article  Google Scholar 

  • Thornton, E.B., A.H. Sallenger, and J.H. MacMahan. 2007. Rip currents, cuspate shorelines and eroding dunes. Marine Geology 240: 151–167.

    Article  Google Scholar 

  • Wright, L.D. 1995. Morphodynamics of inner continental shelves. Boca Raton: CRC.

    Google Scholar 

  • Wright, L.D., and A.D. Short. 1984. Morphodynamic variability of surf zones and beaches—A synthesis. Marine Geology 56: 93–118.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF-OCE no. 092735 to Shanks, Morgan, MacMahan, and Reniers. D. Trovillion, M. Hogan, and J. Noseff provided help in the field and laboratory. Several reviewers of this manuscript provided helpful comments that greatly improved our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan L. Shanks.

Additional information

Communicated by Stephen G. Monismith

Electronic supplementary material

ESM 1

(DOCX 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanks, A.L., Morgan, S.G., MacMahan, J. et al. Persistent Differences in Horizontal Gradients in Phytoplankton Concentration Maintained by Surf Zone Hydrodynamics. Estuaries and Coasts 41, 158–176 (2018). https://doi.org/10.1007/s12237-017-0278-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0278-2

Keywords

Navigation