Skip to main content

Advertisement

Log in

Cyclical Events in the Life and Death of an Ephemeral Polychaete Reef on a Tropical Mudflat

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The polychaete (sabellariid-spionid) reefs at Jeram shore (Malaysia) grow up on soft-bottom mudflats and appear short-lived. It is postulated that such reef building results from the succession of polychaete species in response to the changing environment modulated by the extreme hydrometeorological events. To elucidate the biological succession of the reef cycle in relation to the environment, two reef patches on the intertidal mudflat were studied, both spatially (horizontal and vertical community structure) and temporally (June 2012 to January 2014). The Jeram polychaete reef cycles through four phases within a year: pre-settlement phase (March–May), growth phase comprising primary (May–November) and secondary (October–January) successional stages, stagnation phase (December–January), and destruction phase (January–March). The reef dynamics appear to be linked to the regional monsoon climate and local hydrological conditions. At the onset of the southwest monsoon (May), strong erosive forces initiate the reef’s primary succession of the growth phase where the dominant polychaete Sabellaria jeramae colonize and rapidly grow on the exposed lag deposits of shells. During the northeast monsoon (November–March), stronger depositional forces cover the developed reef with fine sediments that are colonized by another polychaete, the spionid Polydora cavitensis during the reef’s secondary succession of the growth phase. On the muddy substrate surrounding the reef clumps, mudflat polychaetes were the most abundant macrobenthos followed by anomurans, gastropods, carideans, and brachyurans. However, these mudflat macrobenthos play no obvious or direct role in initiating the growth of the reef which is likely the result of settlement of dispersed polychaete larvae from unknown offshore reefs. On the other hand, the reef presence has a positive effect on the presence or abundance of surrounding mudflat macrobenthos such as mudflat polychaetes, shrimps, crabs, and gastropods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almaca, C. 1990. Structure and interactions in the crab community inhabiting sabelariid worm colonies at Praia de Ribeira D'Ilhas (Ericeira, Portugal). Arq Museu Bocage. N.S. 1(37): 505–519.

    Google Scholar 

  • Bellan, G., G. Desrosiers, and A. Willsie. 1988. Use of an annelid pollution index for monitoring a moderately polluted littoral zone. Marine Pollution Bulletin 19: 662–665.

    Article  CAS  Google Scholar 

  • Blake, J.A. 1996. Family Spionidae Grube, 1850. In In: Taxonomic atlas of the benthic fauna of the Santa Maria Basin and western Santa Barbara Channel. Vol. 6. The Annelida. Part 3, ed. J.A. Blake et al., 81–224. California: Santa Barbara Mus Nat Hist.

    Google Scholar 

  • Blake, J.A., and J.D. Evans. 1973. Polydora and related genera (Polychaeta: Spionidae) as borers in mollusk shells and other calcareous substrates. The Veliger 15: 235–249.

    Google Scholar 

  • Bremec, C., C. Carcedo, M.C. Piccolo, E.D. Santos, and S. Fiori. 2012. Sabellaria nanella (Sabellariidae): from solitary subtidal to intertidal reef-building worm at Monte Hermoso, Argentina (39°S, south-west Atlantic). Journal of the Marine Biological Association of the United Kingdom: 1–6.

  • Buchanan, J.B. 1984. Sediment analysis. In Methods for the study of marine benthos, ed. N.A. Holme and A.D. McIntyre, 41–65. Oxford: Blackwell.

    Google Scholar 

  • Chong, V.C., A. Sasekumar, and E. Wolanski. 1996. The role of mangroves in retaining penaeid prawn larvae in Klang Strait, Malaysia. Mangroves and Salt Marshes 1: 11–22.

    Article  Google Scholar 

  • Curtis, L.A. 1978. Aspects of the population dynamics of the polychaete Sabellaria vulgaris Verrill, in the Delaware Bay. Estuaries 1: 73–84.

    Article  Google Scholar 

  • Day, J.H. 1967. A monograph on the Polychaeta of Southern Africa. Part I Errantia and Part II Sedentaria. British Museum (Natural History), London.

  • De Smet, B., L. Godet, J. Fournier, N. Desroy, M. Jaffré, M. Vincx, and M. Rabaut. 2013. Feeding grounds for waders in the bay of the Mont saint-Michel (France): the Lanice conchilega reef serves as an oasis in the tidal flats. Marine Biology 160: 751–761.

    Article  Google Scholar 

  • DID. 2009. Malaysian coastal inventory (Chapter 5), DID Manual, Vol. 3: Coastal management, page 5A–12, Drainage and Irrigation Department, Government of Malaysia, Kuala Lumpur, Malaysia.

  • Dubois, S., C. Retière, and F. Olivier. 2002. Biodiversity associated with Sabellaria alveolata (Polychaeta: Sabellariidae) reefs: effects of human disturbances. Journal of the Marine Biological Association of the UK 82: 817–826.

    Article  Google Scholar 

  • Dubois, S., J.A. Commito, F. Olivier, and C. Retière. 2006. Effects of epibionts on Sabellaria alveolata (L.) biogenic reefs and their associated fauna in the bay of Mont Saint-Michel. Estuarine, Coastal and Shelf Science 68: 635–646.

    Article  Google Scholar 

  • Fauchald, K. 1977. The polychaete worms. Definitions and keys to the orders, families and genera. Natural History Museum of Los Angeles County. Science Series 28: 1–188.

    Google Scholar 

  • Fausto-Filho, J., and E. Furtado. 1970. Nota preliminar sobre a fauna das colônias de Sabellariidae do litoral do Estado do Ceará (Annelida, Sedentaria). Revista Brasileira de Biologia 30: 285–289.

    Google Scholar 

  • Fitri, A., R. Hashim, K.I. Song, and S. Motamedi. 2015. Evaluation of morphodynamic changes in the vicinity of low-crested breakwater on cohesive shore of Carey island, Malaysia. Coastal Engineering Journal 57(4): 1–27.

    Article  Google Scholar 

  • Friedrichs, M., G. Graf, and B. Springer. 2000. Skimming flow induced over a simulated polychaete tube lawn at low population densities. Marine Ecology Progress Series 192: 219–228.

    Article  Google Scholar 

  • Giangrande, A. 1997. Polychaete reproductive patterns, life cycles and life histories: an overview oceanography and marine biology: an annual review 35: 323–386.

  • Gore, R.H., L.E. Scotto, and L.J. Becker. 1978. Community composition, stability, and trophic partitioning in decapod crustaceans inhabiting some subtropical Sabellariid worm reefs studies on decapod crustacea from the Indian River region of Florida. IV. Bulletin of Marine Science 28: 221–248.

    Google Scholar 

  • Gruet, Y. 1970. Faune associée des “récifs”édifiés par l’Annélide Sabellaria alveolata (Linné) en baie du Mont Saint-Michel: banc des Hermelles. Memoires de la Société des Sciences de Cherbourg 54: 1–21.

    Google Scholar 

  • Gruet, Y. 1971. Morphologie, croissance et faune associée des récifs de Sabellaria alveolata (Linné) de la Bernerie-en-Retz (Loire Atlantique). Tethys 3: 321–380.

    Google Scholar 

  • Gruet, Y. 1982. Recherches sur l'écologie des récifs d'Hermelles édifiés par l'Annélide Polychéte Sabellaria alveolata (Linné). PhD thesis, Université des Sciences et Techniques, Nantes, France.

  • Gruet, Y. 1986. Spatio-temporal changes of Sabellarian reefs built by the sedentary polychaete Sabellaria alveolata (Linné). Marine Ecology 7: 303–319.

    Article  Google Scholar 

  • Haig, J. 1960. The Porcellanidae (crustacea Anomura) of the eastern Pacific. Allan Hancock Pacific Expedition 24: 1–440.

    Google Scholar 

  • Hayward, B.W., and J.D. Stilwell. 1995. Floating cockle shells (Austrovenus stutchburyi)—their significance to paleoenvironmental assessments. Tane 35: 143–148.

    Google Scholar 

  • Heuers, J. 1998. A model on the distribution and abundance of the tube building polychaete Lanice conchilega (Pallas, 1766) in the intertidal of the Wadden Sea. Verh. Ges. Ökol. 28: 207–215.

    Google Scholar 

  • Holme, N.A., and A.D. Mclntyre. 1971. IBP handbook no 16. Methods for the study of marine benthos. Oxford: Blackwell.

    Google Scholar 

  • Johnson, D. 1958. The Indo-West Pacific species of the genus Polyonyx (Crustacea, Decapoda, Porcellanidae). Annals of Zoology (Agra) 2: 95–118.

    Google Scholar 

  • Jost, L. 2006. Entropy and diversity. Oikos 113: 363–375.

    Article  Google Scholar 

  • La Porta, B., and L. Nicoletti. 2009. Sabellaria alveolata (Linnaeus) reefs in the central Tyrrhenian Sea (Italy) and associated polychaete fauna. Zoosymposia 2: 527–536.

    Google Scholar 

  • Lomônaco, C., A.S. Santos, and M.L. Christoffersen. 2011. Effects of local hydrodynamic regime on the individual’s size in intertidal Sabellaria (Annelida: Polychaeta: Sabellariidae) and associated fauna at Cabo Branco beach, north-East Brazil. Marine Biodiversity Records 4: e76.

    Article  Google Scholar 

  • Main, M.B., and W.G. Nelson. 1988. Tolerance of the sabellariid polychaete Phragmatopoma lapidosa Kinberg to burial, turbidity and hydrogen sulfide. Marine Environmental Research 26: 39–55.

    Article  CAS  Google Scholar 

  • Martin, D., and T.A. Britayev. 1998. Symbiotic polychaetes: review of known species. Oceanogr Marine Biology 36: 217–340.

    Google Scholar 

  • McCarthy, D.A., C.M. Young, and R.H. Emson. 2003. Influence of wave-induced disturbance on seasonal spawning patterns in the sabellariid polychaete Phragmatopoma lapidosa. Marine Ecology Progress Series 256: 123–133.

    Article  Google Scholar 

  • Miyake, S. 1943. Studies on the crab-shaped Anomura of Nippon and adjacent waters. J Dept Agric, Kyushu Imp Univ 7(3): 49–158.

    Google Scholar 

  • National Hydrographic Centre. 2002. Tide tables Malaysia. Lumut: Royal Malaysian Navy.

    Google Scholar 

  • Nelson, W.G., and M.B. Main. 1985. Criteria for beach nourishment: biological guidelines for sabellariid worm reef, Florida Sea Grant College Program. Technical Paper 33.

  • Ng, P.K.L., and A. Sasekumar. 1993. A new species of Polyonyx Stimpson, 1858, of the P. sinensis group (Crustacea: Decapoda: Anomura: Porcellanidae) commensal with a chaetopterid worm from peninsular Malaysia. Zoologische mededelingen 67: 467–472.

    Google Scholar 

  • Nishi, E., K. Matsuo, M. Capa, S. Tomioka, H. Kajihara, E.K. Kupriyanova, and G. Polgar. 2015. Sabellaria jeramae, a new species (Annelida: Polychaeta: Sabellariidae) from the shallow waters of Malaysia, with a note on the ecological traits of reefs. Zootaxa 4052: 555–568.

    Article  Google Scholar 

  • Noernberg, M.A., J. Fournier, S. Dubois, and J. Populus. 2010. Using airborne laser altimetry to estimate Sabellaria alveolata (Polychaeta: Sabellariidae) reefs volume in tidal flat environments. Estuarine, Coastal and Shelf Science 90: 93–102.

    Article  Google Scholar 

  • Palma, A., and F.P. Ojeda. 2002. Abundance, distribution and feeding patterns of a temperate reef fish in subtidal environments of the Chilean coast: the importance of understory algal turf. Revista Chilena de Historia Natural 75: 189–200.

    Article  Google Scholar 

  • Pawlik, J.R. 1988a. Larval settlement and metamorphosis of sabellariid polychaetes, with special reference to Phragmatopoma lapidosa, a reef-building species, and Sabellaria floridensis, a non-gregarious species. Bulletin of Marine Science 43: 41–60.

    Google Scholar 

  • Pawlik, J.R. 1988b. Larval settlement and metamorphosis of two gregarious sabellariid polychaetes: Sabellaria alveolata compared with Phragmatopoma californica. Journal of the Marine Biological Association of the UK 68: 101–124.

    Article  CAS  Google Scholar 

  • Pearson, T.H., and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Ann Rev 16: 299–311.

    Google Scholar 

  • Polgar, G., E. Nishi, I. Idris, and C.J. Glasby. 2015. Tropical polychaete community and reef dynamics: insights from a Malayan Sabellaria (Annelida: Sabellariidae) reef. Raffles Bulletin of Zoology 63: 401–417.

    Google Scholar 

  • Posey, M.H., A.M. Pregnall, and R.A. Graham. 1984. A brief description of a subtidal sabellariid (Polychaeta) reef on the southern Oregon coast. Pacific Science 38: 28–33.

    Google Scholar 

  • Qian, P.Y., D. Rittschor, B. Sreedhar, and F. Chia. 1999. Macrofouling in unidirectional flow: miniature pipes as experimental models for studying the effects of hydrodynamics on invertebrate larval settlement. Marine Ecology Progress Series 191: 141–151.

    Article  Google Scholar 

  • Rabaut, M., K. Guilini, G. Van Hoey, M. Vincx, and S. Degraer. 2007. A bio-engineered soft-bottom environment: the impact of Lanice conchilega on the benthic species-specific densities and community structure. Estuarine, Coastal and Shelf Science 75: 525–536.

    Article  Google Scholar 

  • Rabaut, M., M. Vincx, and S. Degraer. 2009. Do Lanice conchilega (sandmason) aggregations classify as reefs? Quantifying habitat modifying effects. Helgoland Marine Research 63: 37–46.

    Article  Google Scholar 

  • Ribero, L., and G. Polgar. 2012. The polychaete reefs of Jeram, Selangor. In Mangrove and coastal environment of Selangor, Malaysia, ed. A. Sasekumar and V.C. Chong, 87–95. Kuala Lumpur: University of Malaya Press.

    Google Scholar 

  • Rivosecchi, T. 1961. Observazioni sulle biocenosi del banco a Sabellaria di Lavino. Estr. Rend. Accad. Nazionale XL 4: 1–11.

    Google Scholar 

  • Sankolli, K., and S. Shenoy. 1965. On the occurrence of the tube-worm Loimia medusa (Savigny) in Bombay waters and its commensalism with a porcellanid crab. Journal of the Bombay Natural History Society 62: 316–320.

    Google Scholar 

  • Sato-Okoshi, W. 2000. Polydorid species (Polychaeta: Spionidae) in Japan, with descriptions of morphology, ecology and burrow structure. 2. Non-boring species. Journal of the Marine Biological Association of the UK 80: 443–456.

    Article  Google Scholar 

  • Seilacher, A. 1984. The Jeram model: event condensation in a modern intertidal environment. In Sedimentary and evolutionary cycles, 336–341: Springer.

  • Sloan, N.J.B., and E. Irlandi. 2008. Burial tolerances of reef-building Sabellariid worms from the east coast of Florida. Estuarine, Coastal and Shelf Science 77: 337–344.

    Article  Google Scholar 

  • Taylor, P.R., and M.M. Littler. 1982. The roles of compensatory mortality, physical disturbance, and substrate retention in the development and organization of a sand-influenced, rocky-intertidal community. Ecology: 135–146.

  • Theede, H., A. Ponat, K. Hiroki, and C. Schlieper. 1969. Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulphide. Marine Biology 2: 325–337.

    Article  CAS  Google Scholar 

  • Watson, R.L. 1971. Origin of shell beaches, Padre Island, Texas. Journal of Sedimentary Research 41: 1105–1111.

    Google Scholar 

  • Wells, H.W. 1970. Sabellaria reef masses in Delaware Bay. Chesapeake Science 11: 258–260.

    Article  Google Scholar 

  • Wilson, D.P. 1971. Sabellaria colonies at Duckpool, North Cornwall, 1961–1970. Journal of the Marine Biological Association of the United Kingdom 51: 509–580.

    Article  Google Scholar 

  • Woodin, S.A. 1978. Refuges, disturbance, and community structure: a marine soft-bottom example. Ecology: 274–284.

Download references

Acknowledgments

The authors would like to thank the University of Malaya Research Grant (UMRG) RG131-11SUS for financial support. This work forms part of JJE’s MSc thesis (in preparation). Dr. Khang Tsung Fei (Institute of Mathematical Sciences, University of Malaya) advised JJE on data presentation aspect, drew attention to Jost’s effective number of species, and read the manuscript. Special thanks to Dr. Chris Glasby from the Museum and Art Gallery of the Northern Territory, Australia, and Dr. Stanislas Dubois from the Muséum National d’Histoire Naturelle, France, for identification of polychaetes. Prof. Peter Ng Kee Lin of the Department of Biological Science, National University of Singapore, is acknowledged for identification of brachyurans, anomurans, and carideans. Thanks are due to the Malaysian Meteorological Department for providing wind data. We are grateful to Dr. G. Polgar and an anonymous reviewer for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ving Ching Chong.

Additional information

Communicated by Patricia Ramey-Balci

Electronic supplementary material

Online Resource 1

(DOC 1382 kb)

Online Resource 2

(DOC 41 kb)

Online Resource 3

(DOC 242 kb)

Online Resource 4

(DOC 112 kb)

Appendices

Appendix 1

Table 5 Mean density (D, ind. m−3) and relative abundance (%) of polychaete species and morphospecies recorded from the upper and lower reefs at Jeram shore with respect to the primary and secondary succession of the growth phase and stagnation phase

Appendix 2

Table 6 Mean density (D, ind. m−3) and relative abundance (%) of mudflat macrobenthos recorded from Jeram middle shore and lower shore (surrounding sediments of upper and lower reefs), with respect to the reef’s pre-settlement phase, growth phase (primary succession and secondary succession), stagnation phase, and destruction phase. At middle shore, where there were no reefs, the macrobenthos were also sampled the whole year

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eeo, J.J., Chong, V.C. & Sasekumar, A. Cyclical Events in the Life and Death of an Ephemeral Polychaete Reef on a Tropical Mudflat. Estuaries and Coasts 40, 1418–1436 (2017). https://doi.org/10.1007/s12237-017-0217-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-017-0217-2

Keywords

Navigation