Skip to main content
Log in

Phytoplankton Dynamics and Its Further Implication for Particulate Organic Carbon in Surface Waters of a Tropical/Subtropical Estuary

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Phytoplankton succession along with salinity in estuaries not only influences the riverine ecosystem but also interferes our understanding of riverine materials (e.g., organic carbon) transport to the sea. Four cruises were conducted in a mid-size river and its estuary (i.e., the Wanquan River) to elucidate the riverine phytoplankton decease along increasing salinity and to quantify the amount of algal particulate organic carbon (POC) present in the system at different seasons. CHEMTAX calculations suggested that chlorophytes were the main chlorophyll a (CHLa) contributor in the dissolved inorganic phosphorus-limited river, which contributed over 60 % of the total CHLa. Microscopy further revealed that the dominant species was Scenedesmus sp. In the estuary, phytoplankton succession along with salinity in the estuary was observed. Chlorophyte contribution to total CHLa dramatically decreased from over 60 % in the river (S = 0) segment to <2 % in the estuary (i.e., 0 < S < 30), whereas simultaneously, diatoms increased from <3 % to over 80 %. Microscopy revealed that Scenedesmus sp. was dramatically removed with increasing salinity, and the cell density decreased from over 540 × 103 cell/L (S = 0) to almost 0 when S > 20, suggesting the removal of riverine algae in the estuary. The mean algal POC concentration ranged from 80 μg/L (summer) to 140 μg/L (winter), and the riverine algal POC accounted for 6–56 % of the bulk riverine POC. The annual flux of riverine algal POC was estimated to be 660 tons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abril, G., M. Nogueira, H. Etcheber, G. Cabeçadas, E. Lemaire, and M.J. Brogueira. 2002. Behaviour of organic carbon in nine contrasting European estuaries. Estuarine, Coastal and Shelf Science 54: 241–262.

    Article  CAS  Google Scholar 

  • Cartaxana, P., C.R. Mendes, and V. Brotas. 2009. Phytoplankton and ecological assessment of brackish and freshwater coastal lagoons in the Algarve, Portugal. Lakes & Reservoirs: Research & Management 14: 221–230.

    Article  CAS  Google Scholar 

  • Conley, D.J. 1997. Riverine contribution of biogenic silica to the oceanic silica budget. Limnology and Oceanography 42: 774–777.

    Article  CAS  Google Scholar 

  • Descy, J.P., H.W. Higgins, D.J. Mackey, J.P. Hurley, and T.M. Frost. 2000. Pigment ratios and phytoplankton assessment in northern Wisconsin Lakes. Journal of Phycology 36: 274–286.

    Article  CAS  Google Scholar 

  • Descy, J.P., H. Sarmento, and H.W. Higgins. 2009. Variability of phytoplankton pigment ratios across aquatic environments. European Journal of Phycology 44: 319–330.

    Article  CAS  Google Scholar 

  • Diaz, R.J. 2001. Overview of hypoxia around the world. Journal of Environmental Quality 30: 275–281.

    Article  CAS  Google Scholar 

  • Duan, S.W., and T.S. Bianchi. 2006. Seasonal changes in the abundance and composition of plant pigments in particulate organic carbon in the lower Mississippi and Pearl Rivers (USA). Estuaries and Coasts 29: 427–442.

    Article  CAS  Google Scholar 

  • Furuya, K., M. Hayashi, Y. Yabushita, and A. Ishikawa. 2003. Phytoplankton dynamics in the East China Sea in spring and summer as revealed by HPLC-derived pigment signatures. Deep-Sea Research Part II 50: 367–387.

    Article  CAS  Google Scholar 

  • Gameiro, C., P. Cartaxana, and V. Brotas. 2007. Environmental drivers of phytoplankton distribution and composition in Tagus Estuary, Portugal. Estuarine, Coastal and Shelf Science 75: 21–34.

    Article  Google Scholar 

  • Goosen, N.K., J. Kromkamp, J. Peene, P. van Rijswijk, and P. van Breugel. 1999. Bacterial and phytoplankton production in the maximum turbidity zone of three European estuaries: the Elbe, Westerschelde and Gironde. Journal of Marine Systems 22: 151–171.

    Article  Google Scholar 

  • Grasshoff, K., K. Kremling, and M. Ehrhardt. 1999. Methods of seawater analysis, 600. Weinheim: Wiley-VCH.

    Google Scholar 

  • Guisande, C., A. Barreiro, A. Acuna, L.J. Marciales, E. Hernandez, A.M. Torres, N. Aranguren, W. Lopez, S.R. Duque, L.J. Gallo, N. Aguirre, M. Mogollon, J. Palacio, and G. Rueda-Delgado. 2008. Testing of the CHEMTAX program in contrasting Neotropical lakes, lagoons and swamps. Limnology and Oceanography: Methods 6: 643–652.

    Article  CAS  Google Scholar 

  • Heip, C.H.R., N.K. Goosen, P.M.J. Herman, J. Kromkamp, J.J. Middelburg, and K. Soetaert. 1995. Production and consumption of biological particles in temperate tidal estuaries. Oceanography and Marine Biology. Annual Review 33: 1–149.

    Google Scholar 

  • Henriksen, P., B. Riemann, H. Kaas, H.M. Sørensen, and H.L. Sørensen. 2002. Effects of nutrient-limitation and irradiance on marine phytoplankton pigments. Journal of Plankton Research 24: 835–858.

    Article  CAS  Google Scholar 

  • Huang, B., J. Hu, H. Xu, Z. Cao, and D. Wang. 2010. Phytoplankton community at warm eddies in the northern South China Sea in winter 2003/2004. Deep Sea Research Part II: Topical Studies in Oceanography 57: 1792–1798.

    Article  CAS  Google Scholar 

  • Jeffrey, S.W., R.F.C. Mantoura, and S.W. Wright. 1997. Phytoplankton pigments in oceanography: guidelines to modern methods, 638. Paris: UNESCO.

    Google Scholar 

  • Jiao, N.Z., Y.H. Yang, H. Koshikawa, S. Harada, and M. Watanabe. 2002. Responses of picoplankton to nutrient perturbation in the South China Sea, with special reference to the coast-wards distribution of Prochlorococcus. Acta Botanica Sinica 44: 731–739.

    CAS  Google Scholar 

  • Kromkamp, J., J. Peene, P. van Rijswijk, A. Sandee, and N. Goosen. 1995. Nutrients, light and primary production in the eutrophic, turbid Westernscheldt estuary. Hydrobiologia 311: 9–19.

    Article  Google Scholar 

  • Le, F.F., J. Sun, X.R. Ning, S.Q. Song, Y.M. Cai, and C.G. Liu. 2006. Phytoplankton in the northern South China Sea in summer 2004. Oceanologia et Limnologia Sinica 37: 238–248.

    Google Scholar 

  • Lewitus, A.J., D.L. White, R.G. Tymowski, M.E. Geesey, S.N. Hymel, and P.A. Noble. 2005. Adapting the CHEMTAX method for assessing phytoplankton taxonomic composition in Southeastern U.S. estuaries. Estuaries 28: 160–172.

    Article  CAS  Google Scholar 

  • Li, J., P.M. Glibert, M.J. Zhou, S.H. Lü, and D.D. Lu. 2009. Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea. Marine Ecology Progress Series 383: 11–26.

    Article  CAS  Google Scholar 

  • Li, Y., D.R. Wang, J. Su, and J. Zhang. 2013. Impact of monsoon-driven circulation on phytoplankton assemblages near fringing reefs along the east coast of Hainan Island, China. Deep Sea Research Part II: Topical Studies in Oceanography 96: 75–87.

    Article  Google Scholar 

  • Lionard, M., K. Muylaert, M. Tackx, and W. Vyverman. 2008. Evaluation of the performance of HPLC-CHEMTAX analysis for determining phytoplankton biomass and composition in a turbid estuary (Schelde, Belgium). Estuarine, Coastal and Shelf Science 76: 809–817.

    Article  Google Scholar 

  • Mackey, M.D., D.J. Mackey, H.W. Higgins, and S.W. Wright. 1996. CHEMTAX—a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Marine Ecology Progress Series 144: 265–283.

    Article  CAS  Google Scholar 

  • Mackey, M.D., H.W. Higgins, D.J. Mackey, and S.W. Wright. 1997. CHEMTAX user's manual: a program for estimating class abundances from chemical markers––application to HPLC measurements of phytoplankton pigments. In CSIRO Marine Laboratories Report, 47. Australia: CSIRO Marine Laboratories.

    Google Scholar 

  • McAlice, B.J. 1971. Phytoplankton sampling with the Sedgwick-Rafter cell. Limnology and Oceanography 16: 19–28.

    Article  Google Scholar 

  • Middelburg, J.J., and P.M.J. Herman. 2007. Organic matter processing in tidal estuaries. Marine Chemistry 106: 127–147.

    Article  CAS  Google Scholar 

  • Muylaert, K., and K. Sabbe. 1999. Spring phytoplankton assemblages in and around the maximum turbidity zone of the estuaries of the Elbe (Germany), the Schelde (Belgium/The Netherlands) and the Gironde (France). Journal of Marine Systems 22: 133–149.

    Article  Google Scholar 

  • Muylaert, K., K. Sabbe, and W. Vyverman. 2009. Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/The Netherlands). Estuarine, Coastal and Shelf Science 82: 335–340.

    Article  CAS  Google Scholar 

  • Pan, L.A., J. Zhang, Q. Chen, and B. Deng. 2006. Picoplankton community structure at a coastal front region in the northern part of the South China Sea. Journal of Plankton Research 28: 337–343.

    Article  CAS  Google Scholar 

  • Prahl, F.G., L.F. Small, B.A. Sullivan, J. Cordell, C.A. Simenstad, B.C. Crump, and J.A. Baross. 1998. Biogeochemical gradients in the lower Columbia River. Hydrobiologia 361: 37–52.

    Article  Google Scholar 

  • Redfield, A.C., B.H. Ketchum, and F.A. Richards. 1963. The influence of organisms on the composition of seawater. In The sea, ed. M.N. Hill, 26–77. New York: Wiley.

    Google Scholar 

  • Riemann, B., P. Simonsen, and L. Stensgaard. 1989. The carbon and chlorophyll content of phytoplankton from various nutrient regimes. Journal of Plankton Research 11: 1037–1045.

    Article  Google Scholar 

  • Rudek, J., H.W. Paerl, M.A. Mallin, and P.W. Bates. 1991. Seasonal and hydrological control of phytoplankton nutrient limitation in the lower Neuse River Estuary, North Carolina. Marine Ecology Progress Series 75: 133–142.

    Article  Google Scholar 

  • Sarma, V.V.S.S., S.N.M. Gupta, P.V.R. Babu, T. Acharya, N. Harikrishnachari, K. Vishnuvardhan, N.S. Rao, N.P.C. Reddy, V.V. Sarma, Y. Sadhuram, T.V.R. Murty, and M.D. Kumar. 2009. Influence of river discharge on plankton metabolic rates in the tropical monsoon driven Godavari estuary, India. Estuarine, Coastal and Shelf Science 85: 515–524.

    Article  CAS  Google Scholar 

  • Schlüter, L., T.L. Lauridsen, G. Krogh, and T. Jorgensen. 2006. Identification and quantification of phytoplankton groups in lakes using new pigment ratios—a comparison between pigment analysis by HPLC and microscopy. Freshwater Biology 51: 1474–1485.

    Article  Google Scholar 

  • Sun, J., S.Q. Song, F.F. Le, D. Wang, M.H. Dai, and X.R. Ning. 2007. Phytoplankton in northern South China Sea in the winter of 2004. Acta Oceanologica Sinica 29: 132–145 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Turner, R.E., N.N. Rabalais, D. Justic, and Q. Dortch. 2003. Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry 64: 297–317.

    Article  CAS  Google Scholar 

  • Valdes-Weaver, L.M., M.F. Piehler, J.L. Pinckney, K.E. Howe, K. Rossignol, and H.W. Paerl. 2006. Long-term temporal and spatial trends in phytoplankton biomass and class-level taxonomic composition in the hydrologically variable Neuse–Pamlico estuarine continuum, North Carolina, U.S.A. Limnology and Oceanography 51: 1410–1420.

    Article  Google Scholar 

  • Wright, S.W., D.P. Thomas, H.J. Marchant, H.W. Higgins, M.D. Mackey, and D.J. Mackey. 1996. Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the 'CHEMTAX' matrix factorisation program. Marine Ecology Progress Series 144: 285–298.

    Article  CAS  Google Scholar 

  • Wu, Y., H.Y. Bao, D. Unger, L.S. Herbeck, Z.Y. Zhu, J. Zhang, and T.C. Jennerjahn. 2013. Biogeochemical behavior of organic carbon in a small tropical river and estuary, Hainan, China. Continental Shelf Research 57: 32–43.

    Article  Google Scholar 

  • Zapata, M., and J.L. Garrido. 1991. Influence of injection conditions in reversed-phase high-performance liquid chromatography of chlorophylls and carotenoids. Chromatographia 31: 589–594.

    Article  CAS  Google Scholar 

  • Zapata, M., F. Rodríguez, and J.L. Garrido. 2000. Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and phridine containing mobile phases. Marine Ecology Progress Series 195: 29–45.

    Article  CAS  Google Scholar 

  • Zhu, Z.Y., W.M. Ng, S.M. Liu, J. Zhang, J.C. Chen, and Y. Wu. 2009. Estuarine phytoplankton dynamics and shift of limiting factors: a study in the Changjiang (Yangtze River) Estuary and adjacent area. Estuarine, Coastal and Shelf Science 84: 393–401.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to our colleagues and captain/crew who participated in the field work. Thanks are also given to the two anonymous reviewers whose comments improved the original manuscript. This work is funded by the Ministry of Science and Technology of China (no. 2014CB441503) and the National Science Foundation of China (nos. 41206065 and 40830850).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo-Yi Zhu.

Additional information

Communicated by James L. Pinckney

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, ZY., Liu, SM., Wu, Y. et al. Phytoplankton Dynamics and Its Further Implication for Particulate Organic Carbon in Surface Waters of a Tropical/Subtropical Estuary. Estuaries and Coasts 38, 905–916 (2015). https://doi.org/10.1007/s12237-014-9866-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9866-6

Keywords

Navigation