Skip to main content
Log in

Susceptibility of Potato Cultivars to Blackspot and Shatter Bruise at Three Impact Heights

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

Handling potatoes can create opportunities to develop bruise resulting in quality defects that reduce the acceptability for purchase among retailers, processors, and consumers. Understanding cultivar specific bruise susceptibility can aid in developing appropriate bruise management programs. A two-year trial was conducted to examine bruise susceptibility in six commercially grown russet cultivars as affected by impact height. Russet Burbank, Ranger Russet, Clearwater Russet, Dakota Russet, Teton Russet, and Umatilla Russet were impacted using a device that dropped a 100 g steel weight from 8, 18, or 30 cm height to deliver a uniform impact on both the bud and stem end of a stationary tuber. Blackspot bruise incidence, severity and depth, and shatter bruise incidence were evaluated. Blackspot and shatter bruise were significantly influenced by impact height and tuber end in all cultivars. As impact height increased, blackspot bruise incidence, severity, depth, and shatter bruise incidence increased. There were no significant differences among cultivars or tuber ends in shatter bruise at the 8 cm impact height, but differences became evident at 18 and 30 cm impact heights. Overall, the bud end had lower blackspot bruise incidence, severity, and depth compared to the stem end for all cultivars, although the response difference between ends was dependent on cultivar. Clearwater Russet and Dakota Russet had the highest blackspot bruise incidence compared to other cultivars. Teton Russet had the lowest blackspot bruise incidence, severity rating, and depth among the six cultivars but had the highest shatter bruise incidence. This study provided insight on the importance of including more than one impact height to develop robust bruise susceptibility research protocols as well as develop cultivar-specific bruise management recommendations for the industry.

Resumen

El manejo de papas puede crear oportunidades para desarrollar lesiones oscuras que resultan en defectos de calidad que reducen la aceptabilidad para la compra entre minoristas, procesadores y consumidores. Comprender la susceptibilidad a los moretones específicos de la variedad puede ayudar a desarrollar programas apropiados de manejo de las lesiones. Se realizó un ensayo de dos años para examinar la susceptibilidad a los moretones en seis variedades tipo russet cultivadas comercialmente como afectadas por la altura del impacto. Russet Burbank, Ranger Russet, Clearwater Russet, Dakota Russet, Teton Russet y Umatilla Russet fueron impactadas utilizando un dispositivo que dejó caer un peso de acero de 100 g desde una altura de 8, 18 o 30 cm para ofrecer un impacto uniforme tanto en el lado apical como en el extremo basal del tubérculo estacionario. Se evaluó la incidencia, gravedad y profundidad de las lesiones de mancha negra y la incidencia de rotura. La mancha negra y el hematoma de rotura fueron influenciados significativamente por la altura del impacto y el extremo del tubérculo en todos los cultivares. A medida que aumentaba la altura del impacto, aumentaba la incidencia de moretones, la gravedad, la profundidad y la incidencia de las lesiones por rotura. No hubo diferencias significativas entre los cultivares o los extremos del tubérculo en el hematoma de rotura a la altura de impacto de 8 cm, pero las diferencias se hicieron evidentes a alturas de impacto de 18 cm y 30 cm. En general, el extremo apical de la yema tuvo una menor incidencia, gravedad y profundidad de moretones en manchas negras en comparación con el extremo basal para todos los cultivares, aunque la diferencia de respuesta entre los extremos dependió de la variedad. Clearwater Russet y Dakota Russet tuvieron la mayor incidencia de lesiones de manchas negras en comparación con otras variedades. Teton Russet tuvo la menor incidencia de moretones de manchas negras, calificación de gravedad y profundidad entre los seis cultivares, pero tuvo la mayor incidencia de moretones de rotura. Este estudio proporcionó información sobre la importancia de incluir más de una altura de impacto para desarrollar protocolos de investigación robustos de susceptibilidad a los moretones, así como para desarrollar recomendaciones de manejo de moretones específicas para variedades para la industria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bajema, R. W., and G. M. Hyde. 1998. Instrumented pendulum for impact characterization of whole fruit and vegetable specimens. American Society of Agricultural Engineers 41 (5): 1399–1405. doi:https://doi.org/10.13031/2013.17274.

    Article  Google Scholar 

  • Belknap, W. R., T. M. Rickey, and D. R. Rockhold. 1990. Blackspot bruise dependent changes in enzyme activity and gene expression in Lemhi Russet potato. American Potato Journal 67: 253–265.

    Article  CAS  Google Scholar 

  • Bethke, P. C., A. M. K. Nassar, S. Kubow, Y. N. Leclerc, X. Li, M. Harron, T. Molen, J. Bamberg, M. Martin, and D. J. Donnelly. 2014. History and origin of Russet Burbank (Netted Gem) a sport of Burbank. American Journal of Potato Research 91: 594–609.

    Article  Google Scholar 

  • Canneyt, T. V., E. Tijskens, H. Ramon, R. Verschoore, and B. Sonck. 2004. Development of a predictive tissue discolouration model based on electronic potato impacts. Biosystems Engineering 88 (1): 81–93.

    Article  Google Scholar 

  • Corsini, D. 1996. The response of potato cultivars to bruising. In: Potato bruising: How and why emphasizing black spot bruise, ed. Roger C. Brook. 39-44. Running Water Publishing, Haslett, MI.

  • Corsini, D., J. Stark, and M. Thornton. 1999. Factors contributing to the blackspot bruise potential of Idaho potato fields. American Journal of Potato Research 76: 221–226. doi:https://doi.org/10.1007/BF02854225.

    Article  Google Scholar 

  • Dean, B. 1996. The chemical nature of black spot bruising. In Potato bruising: How and why emphasizing black spot bruise, ed. R. C. Brook, 29–38. Haslett, MI: Running Water Publishing.

    Google Scholar 

  • Edgell, T., E. R. Brierley, and A. H. Cobb. 1998. An ultrastructural study of bruising in stored potato (Solanum tuberosum L.) tubers. Annals of Applied Biology 132: 143–150.

    Article  Google Scholar 

  • Fox, J., and S. Weisberg. 2019. An {R} companion to applied regression, third edition. Thousand Oaks CA: Sage. https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

  • Hendricks, R. L., N. Olsen, M. Thornton, and P. Hatzenbuehler. 2021. Factors that contribute to bruise development and loss of potato quality. M.S. Thesis, University of Idaho, Moscow, ID.

  • Hollingshead, A., N. Olsen, M. Thornton, J. Miller, and A. Lin. 2020. Pythium leak susceptibility influenced by shatter bruise and mechanical failure properties of potato (Solanum Tuberosum L.) In: Managing and monitoring pythium leak and shatter bruise of russet potato. Ph.D. Dissertation, University of Idaho, Moscow, ID.

  • Hyde, G. M., G. K. Brown, E. J. Timm, and W. Zhang. 1992. Instrumented sphere evaluation of potato packing line impacts. American Society of Agricultural Engineers 35 (1): 65–69.

    Article  Google Scholar 

  • Kirkman, M. A. 2007. Global markets for processed potato products. In Potato biology and biotechnology: Advances and perspectives, eds. D. Vreugdenhil, J. Bradshaw, C. Gebhardt, F. Govers, D. K. L. Mackerron, M. A. Taylor, and H. A. Rosse, 471–500. Oxford, UK. : Elsevier, Inc.

    Google Scholar 

  • Konstankiewicz, K., H. Czachor, M. Gancarz, A. Król, K. Pawlak, and A. Zdunek. 2002. Cell structural parameters of potato tuber tissue. International Agrophysics 16: 119–127.

    Google Scholar 

  • Kunkel, R., W. H. Gardner, and N. M. Holstad. 1986. Improvement of techniques for potato blackspot evaluation and some errors associated with measurements. American Potato Journal 63: 13–23.

    Article  Google Scholar 

  • Laerke, P. E., J. Christiansen, and B. Veierskov. 2002a. Colour of blackspot bruises in potato tubers during growth and storage compared to their discolouration potential. Postharvest Biology and Technology 26: 99–111.

    Article  Google Scholar 

  • Laerke, P. E., J. Christiansen, M. N. Andersen, and B. Veierskov. 2002b. Blackspot bruise susceptibility of potato tubers during growth and storage determined by two different test methods. Potato Research 45: 187–202.

    Article  Google Scholar 

  • Lenth, R. L. 2021. Emmeans: Estimated marginal means, aka least-squares means. R package version 1.6.1. https://CRAN.R-project.org/package=emmeans.

  • Lin, S., Moehninsi, M. J. Feldman, and D. A. Navarre. 2021. Evaluation of the possible contribution of phenylpropanoids to potato discoloration. American Journal of Potato Research 98: 130–138.

    Article  CAS  Google Scholar 

  • Lin, T., and R. E. Pitt. 1986. Rheology of apple and potato tissue as affected by cell turgor pressure. Journal of Texture Studies 17 (3): 291–313. doi:https://doi.org/10.1111/j.1745-4603.1986.tb00554.x.

    Article  Google Scholar 

  • Love, S. L., A. Thompson-Johns, B. K. Werner, and T. P. Baker. 1994. RBM134: A mutant of Russet Burbank susceptible to blackspot bruise. American Potato Journal: Short Communication 71: 411–416.

    Article  Google Scholar 

  • Love, S. L., J. J. Pavek, D. L. Corsini, J. C. Stark, J. C. Whitmore, and W. H. Bohl. 1998. Cultural management of Ranger Russet potatoes. University of Idaho Extension Bulletin 919.

  • Maas, E. F. 1966. A simplified potato bruising device. American Potato Journal 43: 424–426.

    Article  Google Scholar 

  • Mathew, R., and G. M. Hyde. 1997. Potato impact damage thresholds. Transactions of the ASAE 40 (3): 705–709. doi:https://doi.org/10.13031/2013.21290.

    Article  Google Scholar 

  • McGarry, A., C. C. Hole, R. L. K. Drew, and N. Parsons. 1996. Internal damage in potato tubers: A critical review. Postharvest Biology and Technology 8 (4): 239–258. doi:https://doi.org/10.1016/0925-5214(96)00006-3.

    Article  Google Scholar 

  • Misener, G. C., C. D. McLeod, J. R. Walsh, and C. F. Everett. 1989. Effect of potato harvesting injury on post-storage marketability. Canadian Agricultural Engineering 31: 7–10.

    Google Scholar 

  • Mondy, N. I., and M. Leja. 1986. Effect of mechanical injury on the ascorbic acid content of potatoes. Journal of Food Science 51 (2): 355–357.

    Article  CAS  Google Scholar 

  • Mosley, A. R., S. R. James, D. C. Hane, K. A. Rykbost, C. C. Shock, B. A. Charlton, J. J. Pavek, S. L. Love, D. L. Corsini, and R. E. Thornton. 2000. Umatilla Russet: A full season long russet for processing and fresh market use. American Journal of Potato Research 77: 83–87.

    Article  Google Scholar 

  • Noble, R. 1985. The relationship between impact and internal bruising in potato tubers. Journal of Agricultural Engineering Research 32 (2): 111–121.

    Article  Google Scholar 

  • Novy, R. G., J. L. Whitworth, J. C. Stark, B. A. Charlton, S. Yilma, N. R. Knowles, M. J. Pavek, R. R. Spear, T. L. Brandt, N. Olsen, M. Thornton, and C. R. Brown. 2014. Teton Russet: An early-maturing, dual-purpose potato cultivar having higher protein and vitamin C content, low asparagine, and resistances to common scab and Fusarium dry rot. American Journal of Potato Research 91: 380–393.

    Article  Google Scholar 

  • Novy, R. G., J. L. Whitworth, J. C. Stark, S. L. Love, D. L. Corsini, J. J. Pavek, M. I. Vales, S. R. James, D. C. Hane, C. C. Shock, B. A. Charlton, C. R. Brown, N. R. Knowles, M. J. Pavek, T. L. Brandt, S. Gupta, and N. Olsen. 2010. Clearwater Russet: A dual-purpose potato cultivar with cold sweetening resistance, high protein content, and low incidence of external defects and sugar ends. American Journal of Potato Research 87: 458–471.

    Article  CAS  Google Scholar 

  • Opara, U. L., and P. B. Pathare. 2014. Bruise damage measurement and analysis of fresh horticultural produce: A review. Postharvest Biology and Technology 91: 9–24.

    Article  Google Scholar 

  • Partington, J. C., C. Smith, and G. P. Bolwell. 1999. Changes in the location of polyphenol oxidase in potato (Solanum tuberosum L.) tuber during cell death in response to impact injury: comparison with wound tissue. Planta 207: 449–460.

    Article  CAS  Google Scholar 

  • Rastovski, A., and A. van Es. 1981. Storage of potatoes: Post-harvest behaviour, store design, storage practice, handling. Wageningen, NL: Centre for Agricultural Publishing and Documentation.

    Google Scholar 

  • Reeve, R. M., E. Hautala, and M. L. Weaver. 1969. Anatomy and compositional variation within potatoes II. Phenolics, enzymes and other minor components. American Potato Journal 46: 374–385.

    Article  CAS  Google Scholar 

  • Reeve, R. M., H. Timm, and M. L. Weaver. 1973. Parenchyma cell growth in potato tubers I. Different tuber regions. American Potato Journal 50: 49–57.

    Article  Google Scholar 

  • Sawyer, R. L., and G. H. Collin. 1960. Black spot of potatoes. American Potato Journal 37: 115–126.

    Article  Google Scholar 

  • Singh, B., V. Bhardwaj, K. Kaur, S. Kukreja, and U. Goutam. 2021. Potato periderm is the first layer of defence against biotic and abiotic stresses: A review. Potato Research 64: 131–146.

    Article  Google Scholar 

  • Smith, A. M., and J. Gillies. 1940. The distribution and concentration of ascorbic acid in the potato (Solanum tuberosum). Biochemical Journal 34 (8-9): 1312–1320.

    Article  CAS  Google Scholar 

  • Spear, R. R., Z. J. Holden, and M. J. Pavek. 2017. Fresh market evaluation of six russet-type potato varieties and four Russet Norkotah strains. American Journal of Potato Research 94: 437–448.

    Article  Google Scholar 

  • Stark, J. C., D. L. Corsini, P. J. Hurley, and R. B. Dwelle. 1985. Biochemical characteristics of potato clones differing in blackspot susceptibility. American Potato Journal 62: 657–666.

    Article  CAS  Google Scholar 

  • Stevens, L. H., and E. Davelaar. 1997. Biochemical potential of potato tubers to synthesize blackspot pigments in relation to their actual blackspot susceptibility. Journal of Agricultural and Food Chemistry 45: 4221–4226.

    Article  CAS  Google Scholar 

  • Thornton, M., and N. Olsen. 2016. Minimize bruises and wounds this harvest season. Idaho Potato Pulse, July 18, 2016.

  • Thornton, M., and W. Bohl. 1995. Preventing potato bruise damage. Extension Bulletin 725. University of Idaho, Moscow, ID.

  • Thornton, R. 1982. A rapid method of bruise analysis and its usefulness. Proceedings of the Washington State Potato Conference & Trade Fair. 133-138.

  • USDA. 2015. Potatoes for processing inspection instructions. United States Department of Agriculture.

  • USDA. 2020. Potatoes 2019 Summary. United States Department of Agriculture, National Agricultural Statistics Service.

  • Vreugdenhil, D., J. Bradshaw, C. Gebhardt, F. Govers, D. K. L. Mackerron, M. A. Taylor, and H. A. Rosse, eds. 2007. Potato biology and biotechnology: advances and perspectives. 1st ed. Oxford, UK: San Diego, CA: Elsevier.

    Google Scholar 

  • Xie, S., C. Wang, and W. Deng. 2018. Model for the prediction of potato impact damage depth. International Journal of Food Properties 21 (1): 2517–2526.

    Article  Google Scholar 

  • Xie, S., C. Wang, and W. Deng. 2020. Experimental study on collision acceleration and damage characteristics of potato. Journal of Food Process Engineering 43: 1–7.

    Article  Google Scholar 

  • Xu, X., D. Vreugdenhil, and A. A. M. van Lammeren. 1998. Cell division and cell enlargement during potato tuber formation. Journal of Experimental Botany 49 (320): 573–582.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the University of Idaho personnel: Lynn Woodell, Tyler Spence, Andrew Hollingshead, and Carlos Centeno for helping carry out the daily tasks needed to complete this project. The authors also thank Dr. Albert Adjesiwor for advice on statistical procedures.

Funding

This study was funded by the Idaho Potato Commission.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Rabecka Hendricks and Nora Olsen. The first draft of the manuscript was written by Rabecka Hendricks and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rabecka L. Hendricks.

Ethics declarations

Disclaimers

none.

Competing Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hendricks, R.L., Olsen, N., Thornton, M.K. et al. Susceptibility of Potato Cultivars to Blackspot and Shatter Bruise at Three Impact Heights. Am. J. Potato Res. 99, 358–368 (2022). https://doi.org/10.1007/s12230-022-09887-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-022-09887-y

Keywords

Navigation