Skip to main content
Log in

Predictive Markers for Cold-Induced Sweetening Resistance in Cold Stored Potatoes (Solanum tuberosum L.)

  • Published:
American Journal of Potato Research Aims and scope Submit manuscript

Abstract

An approach has been developed to screen a large number of potato clones for cold induced sweetening (CIS) resistance in breeding programs. Two key enzymes responsible for reducing sugar accumulation during cold storage were identified. Clones with the A-II isozymes of UDP-glucose pyrophosphorylase coupled with low activity of vacuolar acid invertase enzyme had increased resistance to CIS by forming less suc, which is subsequently hydrolyzed to the undesirable reducing sugars, glc and fru. Six named cultivars and 192 genetically diverse clones from various breeding programs in USA were analyzed over two years for the two key enzymes and sugar concentration in cold stored tubers. The predictability for CIS resistance during cold storage was 94% both years. Clones classified as class A accumulated low concentration of reducing sugar glc during cold storage. It is suggested that these two predictor enzymes can be used for screening parents and selections in potato breeding program.

Resumen

Se ha desarrollado una estrategia para evaluar un gran número de clones de papa para resistencia al endulzamiento inducido por frío (CIS) en programas de mejoramiento. Se identificaron dos enzimas clave como responsables de la acumulación de azúcar reductor durante el almacenamiento en frío. Los clones con las isoenzimas A-II de UDP-glucosa pirofosforilasa, acopladas con la baja actividad de la enzima vacuolar ácido invertasa, han aumentado la resistencia a CIS mediante la formación de menos sac, que es subsecuentemente hidrolizada a los azúcares reductores indeseables glc y fru. Se analizaron seis variedades con nombre y 192 clones genéticamente diversos de varios programas de mejoramiento en los EUA, durante dos años para las dos enzimas clave y concentración de azúcar en tubérculos almacenados en frío. La predicción de la resistencia a CIS durante el almacenamiento en frío fue de 94% en ambos años. Los clones clasificados como clase A acumularon baja concentración de los azucares reductores glc durante el almacenamiento en frío. Se sugiere que estas dos enzimas de predicción pueden usarse para analizar progenitores y selecciones en programas de mejoramiento en papa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CIS:

Cold induced sweetening

DTT:

Dithiothreitol

GFP:

Glucose forming potential

HEPES:

(N-[2-hydroxyl]piperazine-N′[ethanesulfonic acid])

PAGE:

Poly acrylamide gel electrophoresis

PGM:

Phosphoglucomutase

PMSF:

Phenylmethylsulfonyl fluoride

PVDF:

Polyvinylidene fluroide

PVPP:

Poly venylpoly-pyrrolidone

RC:

Recombinant

SPS:

Suc-6-phosphate synthase

UGPase:

UDP-Glc pyrophosphorylase

AcInv:

Acid invertase

Units:

μmol glc formed h−1 mg−1 protein

FWT:

Fresh Weight tuber.

References

  • Ali, A., and S. Jansky. 2015. Fine screening for resistance to cold-induced sweetening in potato hybrids containing Solanum Raphanifolium germplasm. Advances in Agriculture. Article ID 327969.

  • Bhaskar, P.B., L. Wu, J.S. Busse, B.R. Whitty, A.J. Hamernik, S.H. Jansky, C.R. Buell, P.C. Bethke, and J. Jiang. 2010. Suppression of the vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiology 154: 939–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford, M.M. 1976. A rapid and sensitive method for the quantification of micrograms quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S., M.R. Hajirezafi, M.I. Zanor, C. Hornyik, S. Debast, C. Lacomme, A.R. Fernie, U. Sonnewald, and F. Bornke. 2008. RNA interference-mediated repression of sucrose –phosphate in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage with only minor effects on total soluble carbohydrate accumulation. Plant, cell and. Environment 31: 165–176.

    CAS  Google Scholar 

  • Frozen Potato Products Institute (FPPI). 2009. FDA-2009-N-0393-0011.1. Comments submitted to Docket No. FDA-2009-N-0393: Acrylamide in Food; Request for Comments and for Scientific Data and Information.

  • Gupta, S.K., and J.R. Sowokinos. 2003. Physicochemical and kinetic properties of unique isozymes of UDP-glc pyrophosphorylase that are associated with resistance to sweetening in cold-stored potato tubers. Journal of Plant Physiology 160: 589–600.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, S.K., J.R. Sowokinos, and In-Su Hahn. 2008. Regulation of UDP-glucose pyrophosphorylase isozyme UGP5 associated with cold-sweetening resistance in potatoes. Journal of Plant Physiology 165: 679–690.

    Article  CAS  PubMed  Google Scholar 

  • Hamernick, A.J., R.E. Hanneman Jr., and S.H. Jansky. 2009. Introgression of wild species germplasm with extreme resistance to cold sweetening into the cultivated potato. Crop Science 49: 529–542.

    Article  Google Scholar 

  • Kingston-Smith, A.H., R.P. Walker, and C.J. Pollock. 1999. Invertase in leaves: Conundrum or control point? (Review article). Journal of Experimental Botany 50(335): 735–743.

    CAS  Google Scholar 

  • Knowles, N.R., E.R. Driskill, and L.O. Knowles. 2009. Sweetening responses of potato tubers of different maturity to conventional and non-conventional storage temperature regimes. Postharvest Biology and Technology 52: 49–61.

    Article  CAS  Google Scholar 

  • Koh, E.J., S.J. Lee, S.W. Hong, H.S. Lee, and H. Lee. 2008. The ABA effect on the accumulation of an invertase inhibitor transcript that is driven by the CAMV35S promoter in Arabidopsis. Molecules and Cells 26(3): 236–242.

    CAS  PubMed  Google Scholar 

  • Kyriacou, M.C., A.S. Siomos, D. Gerasopoulos, and I.M. Ioannides. 2009. Storage profiles and processing potential of four potato (Solanum tuberosum L.) cultivars under three storage temperature regimes. Journal of Food, Agriculture and Environment 7: 31–37.

    CAS  Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Lindsay, H. 1973. A colorimetric estimation of reducing sugars in potatoes with 3, 5-dinitrosalicylic acid. Potato Research 16: 176–179.

    Article  CAS  Google Scholar 

  • Liu, X., C. Zhang, Y. Ou, Y. Lin, B. Song, C. Xie, J. Liu, and Z.Q. Li. 2011. Systematic analysis of potato acid invertase gene reveals that a cold-responsive member, StvacINV1, regulates cold-induced sweetening of tubers. Molecular Genetics and Genomics 286: 109–118.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X., S. Cheng, J. Liu, Y. Ou, B. Song, C. Zhang, Y. Lin, Z.Q. Li, and C. Xie. 2013. The potato protease inhibitor gene, St-Inh, plays roles in the cold-induced sweetening of potato tubers by modulating invertase activity. Postharvest Biology and Technology 86: 265–271.

  • Manchencko, G.P. 1994. Method of detection of specific enzymes. In Handbook of detection of enzymes on electrophoretic gels, ed. G.P. Manchencko, 20. Boca Raton: CRC.

    Google Scholar 

  • Matsuura-Endo, C., A. Kobayashi, T. Noda, S. Takigawa, H. Yamauchi, and M. Mori. 2004. Changes in sugar content and activity of vacuolar acid invertase during low-temperature storage of potato tubers from six Japanese cultivars. Journal of Plant Research 117: 131–137.

    Article  CAS  PubMed  Google Scholar 

  • McKenzie, M.J., J.R. Sowokinos, I.M. Shea, S.K. Gupta, R.R. Linlauf, and J.A.D. Anderson. 2005. Investigations on the role of acid invertase and UDP-glucose pyrophosphorylase in potato clones with varying resistance to cold induced sweetening. American Journal of Potato Research 82: 231–239.

    Article  CAS  Google Scholar 

  • Mckenzie, M.J., R.K.Y. Chen, J.C. Harris, M.J. Ashworth, and D.A. Brummell. 2013. Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers. Plant cell and. Environment 36(1): 176–185.

    CAS  Google Scholar 

  • Menéndez, C.M., E. Ritter, R. Schäfer-Pregl, B. Walkemeier, A. Kalde, F. Salamini, and C. Gebhardt. 2002. Cold sweetening in diploid potato: mapping quantitative trait loci and candidate genes. Genetics 162(3): 1423–1434.

    PubMed  PubMed Central  Google Scholar 

  • National Potato Council, 2015. Potato statistical yearbook. July 2015, page 65.

  • Ou, Y., B. Song, X. Liu, Y. Lin, H. Zhang, M. Li, H. Fang, and J. Liu. 2013. Profiling of StvacINV1 expression in relation to acid invertase activity and sugar accumulation in potato cold-stored tubers. Potato Research. doi:10.1007/s11540-013-9237-x.

    Google Scholar 

  • Pressey, R. 1966. Separation and properties of potato invertase and invertase inhibitor. Archives of Biochemistry and Biophysics 113: 667–674.

    Article  CAS  PubMed  Google Scholar 

  • Pressey, R. 1969. Role of invertase in accumulation of sugars in cold-stored potatoes. American Potato Journal 46: 291–296.

    Article  CAS  Google Scholar 

  • Richardson, D.L., H.V. Davies, H.A. Ross, and G.R. Mackay. 1990. Invertase activity and its relation to hexose accumulation in potato tubers. Journal of Experimental Botany 41: 95–99.

    Article  CAS  Google Scholar 

  • SAS Institute. 2015. SAS/STAT 9.4 user guide. Cary NC: SAS Institute.

  • Sin’Kevich, M.S., E.P. Sabel’nikova, A.N. Deryabin, N.V. Astakhova, I.M. Dubinina, E.A. Burakhanova, and T.I. Trunova. 2008. The changes in invertase activity and the content of sugars in the course of adaptation of potato plants to hypothermia. Russian Journal of Plant Physiology 55(4): 449–454.

    Article  Google Scholar 

  • Sowokinos, J.R. 2001a. Biochemical and molecular control of cold-induced sweetening in potatoes: invited review. American Journal of Potato Research 78: 221–236.

    Article  CAS  Google Scholar 

  • Sowokinos, J.R. 2001b. Allele and isozyme patterns of UDP-glucose pyrophosphorylase as a marker for cold-sweetening resistance in potatoes. American Journal of Potato Research 78: 57–64.

    Article  CAS  Google Scholar 

  • Sowokinos, J.R., J.P. Spychalla, and S. Desborough. 1993. Pyrophosphorylases in Solanum tuberosum L: IV. Purification tissue localization and physicochemical properties of UDP-glucose pyrophosphorylase. Plant Physiology 101: 1073–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sowokinos, J.R., C.T. Thomas, and M.M. Burrell. 1997. Pyrophosphorylases in potato V. Allelic polymorphism of UDP-glucose pyrophosphorylase in potato cultivars and its association with tuber resistance to sweetening in the cold. Plant Physiology 113: 511–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., A.J. Bussan and P. C. Bethke. 2012. Stem-End defect in chipping potatoes (Solanum tuberosum L.) as influenced by mild environmental stresses. American Journal of Potato Research 89: 292–299.

  • Xu, C., W.K. Coleman, F.R. Meng, M. Bonierbale, and X.Q. Li. 2009. Relationship between glucose accumulation and activities of acid invertase and its inhibitors in potatoes under simulated commercial conditions. Potato Journal 36(1): 35–44.

    Google Scholar 

  • Zhang, H., X. Liu, J. Liu, Y. Ou, Y. Lin, M. Li, B. Song, and C. Xie. 2013. A novel RING finger gene, SbRFP1, increases resistance to cold-induced sweetening of potato tubers. FEBS Letters 587: 749–755.

    Article  CAS  PubMed  Google Scholar 

  • Zrenner, R., K. Schuler, and U. Sonnewald. 1996. Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers. Planta 198: 246–252.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The funding for this research project was provided by Potatoes USA. Author thanks Dr. James Crants for statistical analysis of data. Drs. Florian Lauer and Carl Rosen for the critical review of the manuscript

Patent Application Number

14/535,634. U.S. Patent and Trademark Office: U.S. DEPARTMENT OF COMMERCE

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. Gupta.

Electronic supplementary material

ESM 1

(XLSX 45 kb)

ESM 2

(XLSX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S.K. Predictive Markers for Cold-Induced Sweetening Resistance in Cold Stored Potatoes (Solanum tuberosum L.). Am. J. Potato Res. 94, 297–305 (2017). https://doi.org/10.1007/s12230-017-9565-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12230-017-9565-5

Keywords

Navigation